The author discusses methods used in other social sciences and in marketing in terms of two key criteria defining "good research." It is argued that the simultaneous research desiderata of data integrity and high currency or generalizability often place conflicting operational demands on researchers. Thus, tradeoffs must be made in employing any method to investigate a research problem. As a consequence of these inevitable tradeoffs, a broader rather than narrower method set becomes appropriate for marketing investigations. Case research is explored as one useful alternative research method for marketers. The nature of case research in contrast to case teaching or prescientific case culling is discussed, the appropriateness of case-based versus more conventional deductive methods is considered by researcher objective and type of problem investigated, and a four-stage case research process is described. General guidelines and caveats for the conduct of marketing case research are given. The author concludes that case research may be viewed as a metaphor for the general utility of the varied inductive research methods in expanding our perspectives on marketing research problems.

Case Research in Marketing: Opportunities, Problems, and a Process

Since Hippocrates first presented 14 classic case studies of disease some 2300 years ago, science has proceeded along two divergent knowledge paths. One involves formulating a tentative theory of a phenomenon "writ large," deducing implied empirical consequences, and controlling situational events in order to observe the validity of empirical deductions. The second path, less frequently used but equally valid, is to reason from individual and naturally occurring but largely uncontrollable observations toward generalizable inductive principles.

Research in marketing (and more generally in social science) has emphasized the role of deduction. In its purest form, deductive reasoning is exemplified by the logical syllogism, whereby one poses premises and draws from them some conclusion. Because the conclusion can contain no more information than is contained in the premises, given perfect measures the validity of all findings depends solely on the quality of logic employed. However, in practice precision in measurement often is obtained at the expense of the currency, contextual richness, or "external validity" of the findings.

The tradeoff of increased precision for reduced generality is not a useful one in all situations; many interesting phenomena cannot be understood if removed from their social context. Thus, some researchers have revived inductive, qualitative, and clinical research approaches as an alternative path to scientific learning.

The purpose of this article is to advocate case research to marketers as one method of the inductive approach, and to argue generally for more applications of qualitative techniques in marketing science. Case research, as the term is used here, refers to the qualitative and field-based construction of case studies. It is guided by a process model of discovery which leads to (1) a set of theoretical generalizations from the clinical observations, (2) clinical "constraint testing" of these generalizations, and eventually (3) a clinically validated theory of some marketing phenomenon.

In the next section of the article, discussion of the utility and limitations of case research is framed within a
broader discussion of the tensions accompanying all knowledge accrual and the desiderata for "good" research. We then address methodological issues raised when case research is undertaken and discuss how case research may be differentiated from other typical and topical, but nonscientific, applications of case-based clinical work. Next we present a process model of case research which represents a map of inductive knowledge accrual. We conclude with a discussion of the limitations of and opportunities for case research methods and posit a need for greater breadth in marketing methods.

TENSIONS AND TRADEOFFS OF KNOWLEDGE ACCRUAL

Most scientists agree that research is distinguished from other means of knowledge accrual (e.g., heuristic learning) by its application of "scientific method" in the problem-solving process (e.g., Sellitz et al. 1959; Simon 1978). However, there is no concurrence about what comprises sound scientific method in social science and therefore in marketing (e.g., Calder 1977; Martin 1982). The general issue is whether and under what circumstances "traditional" scientific methods are helpful when behavioral phenomena are under study (McGrath 1982; Runkel and McGrath 1972).

Figure 1 positions various research methods and a few illustrative knowledge-accrual devices (e.g., "myths") ¹ within a two-dimensional space whose axes are defined in terms of two primary objectives of research. The vertical axis, labeled "data integrity," refers to those characteristics of research that affect error and bias in research results. It is an amalgam of what is variously referred to as "internal validity" (Campbell and Stanley 1963), "statistical conclusion validity" (Cook and Campbell 1979), and "reliability" (e.g., Guilford 1954; Sellitz et al. 1959).

The horizontal axis, labeled "currency," uses that term in the sense of "has currency," and pertains to generalizability of results. Specifically, it refers to the characteristics of research that affect the contextual relevance of findings across measures, methods, persons, settings, and time. It is an amalgam of what is variously termed "external validity" (Cook and Campbell 1979; Cronbach and Meehl 1955) and "pragmatic" or "ecological validity" (Brunswik 1952; Sellitz et al. 1959).

Ideally, all researches and all researchers seek high levels of both data integrity and results currency. However, as Figure 1 suggests, when researchers make methods choices they often must trade one desideratum of research for another. A practical "feasibility constraint" forces the researcher—for example, one doing a quasi-experiment on seat belt usage—to trade some of the coin of causation (data integrity) for the moderate generalizability of findings he or she obtains because of the very choice of research problem and method. The opposite set of constraints, high data integrity but low currency to real world settings, beleaguer the laboratory researcher interested in persuasive fear appeals as a potential foundation for seat-belt-related advertising campaigns. According to McGrath (1982), ". . . all research strategies are seriously flawed, often with their very strengths in regard to one desideratum functioning as serious weaknesses in regard to other, equally important goals. Indeed, it is not possible, in principle, to do 'good' (that is methodologically sound) research" (p. 70).

The cause for this dilemma is the inability of any single research method simultaneously to minimize multiple threats to both data integrity and currency (Campbell and Stanley 1963). For example, the study which seeks a high degree of data integrity requires a precise operationalization of the research variables, a relatively large sample size and quantitative data for statistical power, and the ability to exercise control over persons, settings, and other factors to prevent causal contamination. In contrast, a study which seeks high currency typically demands situationally unconstrained operationalizations of variables to allow cross-setting generalization, and observations within natural, ecologically valid settings—"noisy" settings—where large samples, quantitative

¹The reason somewhat more than the traditional liberties have been taken in defining methods of knowledge accrual in Figure 1 is to make an important point. Though myths have high currency and personal opinions low, both of these nonscience devices generally involve little or no data integrity. Thus, at least a modicum of data integrity must always be preserved for knowledge-gaining activities to be termed "scientific."
measures, and control are more difficult to achieve. Often, the latter kind of study demands a greater use of subject, or, at best, clinical analysis. Thus, in Figure 1 s's methods as laboratory experiments are positioned in the top left corner (high data integrity, low currency), whereas methods such as field studies and case research—which seek to relate phenomena as perceived by the investigator in natural settings—are oppositely placed (low data integrity, high currency).

Ideally, a researcher can simultaneously pursue high levels of data validity and generalizability by adopting triangulation strategies which provide replication and/or corroboration of findings across methods within a single research project. The “multitrait-multimethod” approach of Campbell and Fiske (1959) exemplifies this type of endeavor. In practice, however, within-project triangulation is rarely used. As Martin (1981) points out, there often are technological and expense barriers to using triangulation within any one research project.

Ordinarily, science implicitly relies on “interproject” triangulation to help accrue a body of knowledge satisfying the two desiderata of integrity and currency. Researchers pursuing similar topics may choose different methods and contexts. This is not bad, for when there is experimental and field study and case confirmation that a given phenomenon holds, one may feel more confident about the phenomenon even though some studies are low in currency and others have data integrity problems. The notion of cross-method, cross-project validation is similar to Leone and Schultz’ (1980) notion of research corroboration.

In some research areas, however, such corroboration does not occur because the “feasibility constraint” is narrowed unnecessarily by habitually chosen methods. If the methods set used is narrow, a balance of inquiry is less likely to be achieved in a discipline that marries integrity with currency across studies.

Making the Tradeoffs

Though a broad set of sociology of science variables affects methods choice (cf. Mitroff 1974), the focus here is on aspects of research itself which might help researchers identify those occasions on which one desideratum should be preserved at the expense of another. Two characteristics of research problems are considered, the purpose of the research and the nature of the phenomenon under study.

Purpose of the research. Following Simon (1978), McGrath (1982), and Cook and Campbell (1979), one may discriminate points along a hierarchy of study types. The different types of studies appear to engage the research tensions differently. One common listing of the points along the research continuum might be: description, classification, comparison, measurement/estimation, establishing association, and determining cause and effect. At each sequential step in the research hierarchy one presumes that the preceding types of studies have been undertaken, either formally or informally, at some previous time. For instance, without evidence of association there is no a priori reason to consider issues of cause and effect. Similarly, until a phenomenon has been described, it cannot be adequately classified nor can operational measures be defined. In this sense, studies toward the description end of the continuum might be associated more frequently with theory building, whereas those near the cause-and-effect end are more frequently used for theory disconfirmation.

As researchers move toward the causal end of the research hierarchy, the tensions of knowledge accrual tend to direct investigators toward methods high in data integrity. High data integrity builds confidence “that an observed relationship between variables is causal and that the absence of a relationship implies no cause” (Cook and Campbell 1979, p. 84). Once causation is established, replications (usually by other high data integrity methods) may be used to test the limits of (or to corroborate) observed relationships.

When the existing body of knowledge or theory is well developed, the use of methods oriented toward the lower-right apex of Figure 1 may be inefficient. Though theoretical propositions can be confronted with naturalistic observation, the disconfirmation of propositions solely with these methods is ill-advised. Lower apex methods on the figure risk measurement bias and error due to researcher subjectivity (Gordon 1976) or, as London (1964) states, “the imposition of value and the fact upon each other.” It is not surprising that when the focal concerns are causal limits, quantification, and the attendant ability to attain measurable internal validity, statistical conclusion validity, and falsification, the findings of studies in the lower-right apex of Figure 1 are considered suspect or even “unscientific” (van Maanen 1979b).

However, when researchers’ interests or phenomenon requirements dictate theory building rather than verification or extension, the tasks of description, classification, and comparison become relevant. Then methods oriented toward the lower-right apex of Figure 1 may be more efficient than others. If properly conducted, research by these methods can provide a “deep understanding” (Geertz 1973), a fuller contextual sense of the phenomena under study (Miles 1979), and an explicit provocation toward theory building that often is missing from both simple descriptive work and most cause-and-effect research (van Maanen 1982a). Presumably, researchers armed with understanding so gained may then, under appropriate conditions, seek to move up the hierarchy of study types toward causal disconfirmation.

When methods oriented toward the upper-left apex of Figure 1 are used to investigate research topics about which theoretical development is scant or uncertain, research often is inefficient or misleading. Either the power of deductive methods is underutilized, or theory and/or method are prematurely pressed into service when their underlying assumptions cannot be met. In the former case, superior understanding could be achieved by using tools that allow development of in-depth information on con-
textual factors. In the latter instance, the researcher defeats the very strengths of data integrity that the method choice is intended to provide. In both instances, the preservation of data integrity merely to provide a numerate description of qualitatively complex phenomena can “sterilize” (van Maanen 1979a) research to a point where researchers “pore devoutly over survey returns as if life were trapped beneath the pencil marks” (Dabbs 1982, p. 644). 2

Phenomena of interest. Two key issues are related to the nature of the phenomenon under study. One is whether the phenomenon can be studied usefully outside its natural setting. The second is whether it is amenable to quantification. Many issues of interest to marketers cannot be studied outside the context in which they naturally occur. If, for example, buyer behavior is seen as a dyadic interaction with the seller, interference with the context of that interaction may distort the behavior that is studied. Thus, even carefully designed surveys or simulations might not accurately portray the true nature of the interactions (e.g., Bonoma, Zaltman, and Johnston 1977). In terms of amenity to quantification, certain areas of interest to marketers simply defy counting approaches. For example, the nature of “good practice” in marketing management (cf. Bonoma 1984) and the coordination of marketing activities with other business functions are currently nonquantifiable phenomena; they are so complex it is impossible at this early stage of theory development to know what to count. Regardless of whether these context and quantification limitations are expressions of the current lack of understanding for certain marketing phenomena (poor theory development) or whether they represent limitations in measurement and analytic technology, much of what the marketing scholar might study requires a contextual sensitivity which cannot be achieved by methods that maximize data integrity.

Where setting must be preserved and quantification is possible, the researcher can adopt “quasi-experimental” designs (Campbell and Stanley 1963)—provided there is a body of prior theory upon which investigations can be structured for good deduction. However, as implied in the preceding discussion, seeking a high degree of data integrity even under these more realistic conditions may force a particularism of method, instrument, operationalization, or sample that renders questions of generalizability moot.

Premature application of theory-testing “normal science” methods in situations where context-preserving theory-building methods might have been more appropriate has been a source of concern across the social sciences. Thus arise the frequent complaints that psychology is the science of the college sophomore, and the increasing concern about the ability of verbal-report studies (including surveys) to reflect subjects’ actual behavior (e.g., Nisbett and Wilson 1977).

Where respondents cannot verbalize the underlying causes of their behavior reliably or where a phenomenon, because of its complexity or breadth, cannot be operationalized meaningfully in qualitative terms, clinical judgment based on qualitative data is required. Though data integrity will suffer somewhat, clinical approaches should not be discounted as “unscientific.” Clinical methods should be guided by the same general principles as more quantitative methods; the primary distinction is the use of inductive, theory-building—as opposed to deductive, theory-testing—technology. As Calder (1977) notes, the clinical approach “attempts to make use of scientific knowledge without being bound by quantitative methods of analysis” (p. 357).

MARKETING RESEARCH STRATEGIES: ACTUAL AND RECOMMENDED

Until recently, there has been a strong preference in social science research toward preserving data integrity through the use of quantitative/deductive research methods whenever possible (e.g., Mitroff 1974). This preference also is evident in marketing. A random sample of 10 issues of the Journal of Marketing Research for the years 1977–1982, for example, shows marketing’s research methods to be characterized by (1) substantial methodological attention and self-study, ordinarily advocating quantitative or “objective” methodological innovations, (2) no qualitative studies of any sort, and (3) considerable use of indirect measures of behavior (e.g., verbal reports) rather than direct assessments of the phenomena (e.g., purchases) under consideration. 3

In other disciplines, a growing dissatisfaction with the application of quantitative research methods and strategies has emerged, particularly as they are applied to phenomena not easily operationalized or easily observable outside the natural settings in which they occur (for examples, see the special issue of the Administrative Science Quarterly 1979, or the Sage Series in Qualitative Research, e.g., van Maanen, Dabbs, and Faulkner 1982c). Van Maanen (1982a) gives some reasons for this re-

2This is not to suggest commercial marketing research studies that seek to provide information on such items as consumption patterns of demographic groups are indicative of “bad” research. Rather, it suggests that a better description could be obtained by methods that also seek to explore why those patterns exist. Whether such depth of description can be provided by quantitative investigation depends on the phenomenon under study.

3In this sample, 124 articles were coded as qualitative or quantitative in method, as direct or indirect in measurement, and as employing a student or nonstudent population. A limited sampling from the Journal of Marketing Research should not be considered representative of the overall content of the marketing literature. However, JMR is a preeminent publication on research methods in marketing, and as such is indicative of the methodological preferences of the marketing community.
emergence of qualitative research in the disciplines of sociology and psychology: "The sources of disenchantment [with quantitative/deductive tools] are many, but deserving of passing note are: the relatively trivial amount of explained variance, the abstract and remote character of key variables, the lack of comparability across studies, the failure to achieve much predictive validity . . . and the causal complexity of multivariate analysis, which, even when understood, makes changes-oriented actions difficult to contemplate" (p. 13).

A growing number of researchers in economics (e.g., Piore 1979), medicine (e.g., Feinstein 1977), organizational behavior (e.g., Fombrun 1982; van Maanen 1979a), sociology (McGrath, Martin, and Kulk 1982; Mitroff 1974), and psychiatry have advocated and helped foster rebirth of qualitative research in the social sciences. Some of these researchers have gone so far as to say that, given the low level of theoretical knowledge about phenomena in which social science is interested, coupled with the known complexities and context-sensitivities of these same phenomena, qualitative research is the major or even the only valid knowledge-accumulation device open to scientists whose interests are focused on human behavior. Though we do not go so far, it may be noted that many important marketing phenomena meet the dual conditions of little theoretical knowledge and high complexity. Such phenomena should be suited to the application of qualitative research methods. However, little trend toward qualitative research has yet been observed in marketing.

Because of marketing's quantitative/deductive research roots, many marketing subject areas not amenable to study by the methods oriented toward the top-left apex of Figure 1 have received little research attention of any sort. For instance, though much is written about normative pricing strategy formation, almost nothing is known descriptively about how (or whether!) managers engage these strategies under real-world pressures. Indeed, little is known about what constitutes effective marketing management in practice (or whether practice is consistent with what little is known from theory, survey verbal reports, or student simulations). What is known about such questions often evolves from practical experience, undocumented analogies with other disciplines, and common-sense reasoning. The apparent research bias toward types of investigation that preserve data integrity at the expense of currency results in a methodological one-sidedness that may impair the development and testing of sound theories.

In sum, there is a role and a need for a much broader set of knowledge-accumulation mechanisms than those conventionally employed in marketing research. In particular, methods toward the lower-right apex of Figure 1 seem especially well-suited to aspects of marketing where there is a relatively thin theoretical base or complex observational task. One such method found promising by many researchers (e.g., Duncan 1979; McClintock, Barnard, and Maynard-Moody 1979) is case research.

CASES, CASE TEACHING, AND CASE RESEARCH

Case studies are most familiar to marketers as a pedagogical device, or as a means of generating exploratory insights prior to more “rigorous” investigations. Here, neither of these uses of cases is viewed as case research; rather, the use of cases as research tools is our focus. Though examples of case research qua research can be found (c.f., Bonoma, in press; Corey 1978; Corey and Star 1971), little guidance about how to conduct marketing case research is available, except in literatures not often examined by marketing researchers (e.g., Geertz 1973; van Maanen 1982). In this section, therefore, we discuss the nature of a case, then differentiate the use of cases for teaching, prescientific, and research purposes, and set the stage for discussion of a four-stage qualitative research process intended to guide qualitative and case-based research endeavors.

Case Studies

Defined most generally, a case study is a description of a management situation. As such, it is the marketing analogue of the physician's clinical examination (e.g., MacLeod 1979), and relies on a similar appeal to multiple data sources for reliable diagnosis (cf. Leenders and Erskine 1978). Though case studies familiar from classroom use usually focus on some problem of high currency to firm management and have broad pedagogical appeal, cases without any problem focus can be constructed to learn about the operation of a healthy management or marketing organization. Thus, though management “disease” often is the stimulus for case construction, a problem focus is not required.

Second, case construction implicates multiple data sources. Like other qualitative methods, cases often rely heavily on verbal reports (personal interviews) and unobtrusive observation as primary data sources. However, case method is distinguished from other qualitative methods in that it involves numerous other data sources, some of which are quantitative. These other data sources serve as a means of “perceptual triangulation” and provide a fuller picture of the business unit under study. Prime among these sources are financial data (e.g., budgets, operating statements), market performance data (e.g., share, sales by territory), and market and competitive data (e.g., product replacement rates, competitive spending levels). Additional data sources consulted include written archives (e.g., memoranda), business plans, and direct observations of management interactions.

"The notion of “perceptual triangulation” raises the point that, in all qualitative research, knowledge depends heavily on the perceptions of the actors and of the observer (or case compiler) Following Geertz, however, knowledge can only be considered knowledge within the confines of someone’s perceptual framework, which is called “signification.” The fact that we know so little of how managers perceive marketing realities is a major concern
Third, cases should reflect and be sensitive to the context within which management’s acts occur and to the temporal dimension through which events unfold. They go beyond providing a static snapshot of events, and cut across the temporal and contextual gestalt of situations.

Finally, cases require direct observation of management behavior by a trained observer who applies his/her own construal of the ongoing events, while also trying to understand the construals of the actors. Case method, in short, requires skilled clinical judgments about what to watch and what it means.

Thus, like other qualitative methods, case method is concerned basically with the researcher’s interpretation of management’s signification of events, information, and reality—that is, it depends on the researcher’s perceptions about management’s meanings, not on some “objective reality.” Unlike some other qualitative methods, case methodology draws on numerous other data sources to triangulate these perceptions and significations within a broader context.

Case Research Versus Case Teaching

A case is a description, directly obtained, of a management situation based on interview, archival, naturalistic observation, and other data, constructed to be sensitive to the context in which management behavior takes place and to its temporal restraints. These are characteristics shared by all cases; thus, the utility of a case for research purposes cannot be determined without knowledge of the compiler’s purposes for its construction and the uses to which the case is put.

It is common to speak of “teaching cases” and “research cases” in discussions of case method. Such a distinction is sometimes not discernible from examining cases once constructed. It is the compiler’s research objectives in applying case methods, and the subsequent use of what is compiled for theory building, that makes the difference.

Cases used for research purposes are not simply picked from topical accounts of interesting management dilemmas in the press or to fill a course “hole,” as often happens with teaching case development. Rather, much as in “normal science,” the investigator should specify research objectives before case development and, indeed, before case method is chosen as the research strategy. Furthermore, the objectives may be hierarchical and therefore may change over the early, middle, and late stages of the broader research project. Case method may be appropriate for one but not another stage of the research. For example, the investigation of the determinants of “good practice” in marketing as it occurs among marketing managers may be a viable research objective, satisfiable from survey methods, experimentation, or case method at various project stages (Bonoma, in press). It is the nature of the problem and its formulation (low theory development, complex nature, and need to be studied in a natural context) which determines the applicability of case method, not classroom need.5

Thus, cases can be used as qualitative research vehicles in the tradition of the method Geertz (1973) characterizes as “thick description.” The critical differentiator of case research from other legitimate, but nonscientific, uses of cases is that the research objective of the investigator should guide a coherent application of case method across numerous cases for theory development and testing. When used in this scientific way, cases fall in the lower-right apex of Figure 1.

On the basis of this view, certain endeavors should not be considered case research, though they use a case method. Some projects lack the element of direct naturalistic observation, as when existing cases are used to develop a theoretical model for which they were not constructed. Other direct naturalistic observations (as in case development for classroom purposes) lack the critical research objective set to tie together cross-case development and to allow theory building from the observations. Still other case method applications may be correctly implemented in the sense of using direct observations coupled with a research objective, but the more developed state of theory (say, in consumer behavior) may make the method inefficient or inappropriate.

However, many currently underspecified marketing phenomena are well suited for case-based investigation. The management of distributor relationships, sales management, and the general question of what constitutes effective marketing management are three illustrative areas where case research could lead to substantial theoretical advances.

A PROCESS FOR CASE RESEARCH

When case development is undertaken for research purposes, a theory/data/theory revision cycle is useful. Figure 2 shows a four-stage process constructed to guide and explain qualitative applications of case method in marketing research. The four stages in the process are labeled “drift,” “design,” “prediction,” and “disconfirmation.”

Regardless of the research objective, in the beginning stages of case research the investigator and the investigation are in the drift mode. This stage consists of the investigator’s attempts to learn the concepts, locale, and jargon of the phenomenon as it occurs “in the field.”

5The idea that direct observation is required for case research means that a common practice—using previously compiled cases either to illustrate theoretically important phenomena or to form the basis for theory building—cannot be called scientific and in no way constitutes case research as the term is used here.

6However, this is not to say that cases compiled for research purposes cannot be used to good effect in the classroom. To the contrary, one benefit of case research is that it can offer a substantial opportunity to integrate course development with research progress (see Bonoma 1984)
and to begin preliminary integration from literature, a priori notions about the phenomenon’s operation, and critical components of practice as observed. This is a “soaking in” stage in which contexts are observed to get a better perspective on modifications necessary to the basic research question in order to ensure fruitful investigation (van Maanen 1982b). A case constructed in this phase ordinarily should be construed by the investigator both as a problem for individual analysis and as a stimulus for further thinking (e.g., about some classification schemes which might afford better-directed observation). Most research methods involve this sort of “situation analysis” stage—in one form or another.

A good example of the case research drift stage is given in Piore’s (1979) account of his first attempt to do case research in economics. Much of his early research was not data collection at all, but instead focused on learning to cope with the discrepancies between his prior conceptualizations of manning levels in plants and the way the issue was thought about in the field. He notes that it took time to overcome his reluctance to listen to managers’ “stories” about manning levels as anything other than useless mythology, and to consider such accounts as perhaps a more useful construal of his research interest than his own original, theoretically legitimate expression. He notes that, in the absence of such “stories,” he probably would have treated management behavior as model deviations that required a “correction factor” instead of as the stimulus for building a more correct understanding. As Piore’s frank account implies, one of the critical, but difficult, tasks of the researcher in the drift stage is to suspend a priori bias, and to be ready to learn from naturalistic phenomena as they present themselves.

The drift stage becomes the design stage with the development of a tentative explanation of the divergent observations so far collected. For example, the movement from the drift to the design stage in a study of organizational purchasing dynamics (Corey 1978) occurred with the insight that much of the variance attributed to managers’ behaviors in companies as diverse as Heinz, General Motors, and IBM seemed to be related to the degree of decentralization in the purchasing organization. With this insight, the investigator had a basis for the pursuit of theory.

In the design stage, the object of data collection is to assess and refine major areas of inquiry suggested by the preliminary model. In the purchasing study cited before, for instance, cases on purchasing dynamics might be collected up and down the centralization/decentralization continuum to provide a sufficient (not statistically so) body of observations with which to “flesh out” the model and permit the development of some generalizations to account for divergences in observations. In other research projects, the goal may be more descriptive or classification-oriented. In a study of marketing implementation, for example, completion of the drift stage led to the specification of four “levels” at which marketing execution could be thought to take place, and four critical managerial skills implicated in good marketing practice (Bonomi, in press).

In either case, the design stage is one of “fleshing out” a beginning conceptualization of events. The critical skill for the qualitative researcher at this point is to be willing to let further data “recycle” his/her thinking back to drift if beginning conceptualizations do not hold up against new situations or as better conceptualizations suggest themselves.

The third stage of case research, the prediction or generalization-formation stage, occurs in the middle-to-late life of a case research project. By this stage the researcher has both a model suggesting generalizations for test and a good understanding of the factors on which field observations may be grouped, and wishes to evaluate beginning predictions by further case construction. The research will compile more cases from sites that are different from, but conceptually similar to, those sites used to arrive at the generalizations. This step usually requires evaluating the generalization in industries or settings not yet explored.

In the study of marketing implementation previously cited, for example, some tentative generalizations about good practice were developed from case work done in the design stage. One such proposition was that structures for implementation (such as systems for competitive intelligence, or policies on pricing) often got in the way of good practice; skillful individual managers, however, could offset this structural degradation and accomplish excellent execution. A large number of cases were collected (1) to test the predictive power of the gener-
alization and (2) to learn about its parameters (e.g., could strong structures compensate for weak skills, or was the opposite the case?).

The critical qualitative research viewpoints involved in this stage include (1) openness to the fact that many generalizations are not very general, being circumscribed to particular situations, settings, or industries, and (2) the willingness to treat disconfirming knowledge as a stimulus for the development of new, modified generalizations which do hold across settings.

The fourth stage, *disconfirmation*, consists of further testing the limits of generalizations not rejected in the prediction stage. An attempt is made to disconfirm the tentative generalizations by applying them to another, even broader, set of cases than was sought in the prediction stage. The contexts for these cases should be characterized by extreme conditions where the generalizations’ limits might be expected to be exceeded.

This stage in case research is a surrogate for the falsification procedures used in deductive work. For example, case research on financial organizations in Fortune 500 companies may identify aspects of pricing strategies as keys to good marketing practice. In this fourth stage, the investigator might compile cases in some small, high technology startup contexts to learn how the proposed processes appear in a very different industry and environment. The blending of the disconfirmatory aspects of the prediction stage and the more complete falsification attempts in this stage illustrates an important point: these four stages do not form some rigid hierarchy, but rather an iterative evolution toward understanding, much like that found in deductive research approaches. It is the application of a process such as this one to repetitively developed cases which, along with research purpose, primarily differentiates case research from case development.

It is important, however, to note other substantial differences between case research and more high-data-integrity methods. First, the goal of data collection in case research is not quantification or even enumeration, but rather (1) description, (2) classification (typology development), (3) theory development, and (4) limited theory testing. In a word, the goal is understanding.

Second, most enumeration is of little value to a case researcher. The goal is not the breadth or representativeness of large-\(n\) research, but rather the depth of the knowing. The risks of low data integrity are traded for the currency and contextual richness of what is learned. Once researchers are confident of their understanding of a phenomenon explored with case research, other, more traditional deductive approaches may be applied to the problem (if enough theory has been developed to allow them). However, even by itself a "purely qualitative" case research project can be the basis for a valuable and valid scientific attack on certain classes of important problems. A case research project can represent a full, if different, implementation of the scientific theory-data cycle which conforms to the same basic rules of knowledge accrual as "standard" research methodologies.

CONCLUSION: PROBLEMS, OPPORTUNITIES, AND A PLEA FOR BREADTH

Clearly, case research is more appropriate for some and less appropriate for other marketing research projects. We have tried to outline the situations in which it is appropriate and to give some general process guidelines for its conduct.

However, significant problems remain for researchers who would adopt case research methods for their investigations into marketing phenomena. These group into conceptual, executional, and political problems. Conceptually, it is easy to advocate a high quality clinical judgment, but difficult to cultivate or improve such judgment except by *doing* clinical projects. Moreover, each "data point" in case research (a case study) can be an extensive and expensive venture, making the acquisition of such qualitative expertise arduous or slow. Executionally, access to corporations appropriate for the research objectives may not be as easy as obtaining student subjects or the resources necessary for mail questionnaires. Individual case studies are not necessarily as expensive as a major survey project, but the necessity for repeated case development in the theory/data/theory validation cycle often requires a more substantial investment of time and funds than would have to be made with some other methods. Politically, because the major thrust of most published marketing research is toward deductive, numerate, and causally directed research, the researcher may have a greater challenge in demonstrating the benefits and necessity of qualitative methods for the problem studied.

Case research does offer significant opportunities to the marketer and the marketing community. First, it allows investigation of a number of important marketing problems which to date have been ignored in theory building and analysis—often because of their complexity or ecological-rootedness. Second, the clinical judgment gained from case research may feed back not only into the research project itself, but to the classroom, to consulting, and to other, deductive theory-testing efforts as well. More generally, however, case and other qualitative research can move marketing scholars closer to marketing managers, while laying a clinical foundation for advancing marketing knowledge in new and significant areas.

In a broad sense, the advocacy of case research in this article is a metaphor for wider consideration of nontraditional and qualitative research methods of all sorts. There are many which can and should have a place in marketing research. These include Salancik's (1979) "field stimulation technique" involving the documentation of organizational reactions to researcher-generated stimuli; Dabbs' (1982) application of videorecording technology to study events in faster- and slower-than-normal time to uncover overlooked behavior patterns; and McClintock, Barnard, and Maynard-Moody's (1979) "case cluster" method in which cases are studied via the underlying model of survey research.
There are identifiable sets of research situations (and stages of research design) where the qualitative, in-depth nature of these “high currency” approaches is desirable, even if accompanied by some risks to data integrity. In particular, they are useful when a phenomenon is broad and complex, where the existing body of knowledge is insufficient to permit the posing of causal questions, and when a phenomenon cannot be studied outside the context in which it naturally occurs. However, these are “features” of appropriate problems and not the major “benefits” of nontraditional approaches. The real benefits are that clinical research methods offer the potential to deepen the perspective of persons performing and using research, and that they expand the range of research problems that can be considered. The implementation of Kelly’s (1954) notion of “constructive alternativism” in research methods, the ability to construe knowledge in novel and useful ways, is central to maintaining the vitality of any area of inquiry.

REFERENCES

