Success/Failure Bias in Attributions Across Involvement Categories in Sport

J. Robert Grove
Stephanie J. Hanahan
Adrian McInman
University of Western Australia

Studies addressing success/failure biases in attributions for sport performance have produced equivocal results. The traditional hypothesis that success will be internalized and failure externalized has been supported in some studies but not in others. A few investigations have indicated that winners do, however, make more stable and controllable attributions than losers. This study examined the generality of this effect among 110 players, coaches, and spectators in recreational basketball competitions. Results indicated that winning outcomes were indeed attributed to more stable and controllable causes than losing outcomes. These findings were consistent across all categories of involvement (players, coaches, spectators) and were not affected by outcome margin (game close, game not close). Discussion focuses on the operation of situational norms in sport that may have contributed to these effects.

Attributional processes are influenced in predictable ways by a variety of personal and situational factors. One of the most frequently examined factors is task outcome. A number of studies have found a tendency for individuals to make internal attributions for success and external attributions for failure. Although the mechanisms underlying this success/failure bias have been debated, there appears to be general acceptance of the phenomenon itself (see, e.g., Miller & Ross, 1975; Pyszczynski & Greenberg, 1987; Tetlock & Levi, 1982; Weary-Bradley, 1978; Zuckerman, 1979).

Research addressing attributional bias within competition and sport, however, has produced equivocal results. Some studies have found that competitors make more internal attributions for success than for failure (Gill, Ruder, & Gross, 1982; Iso-Ahola, 1977; Lau & Russell, 1980; Riess & Taylor, 1984; Riordan, Thomas, & James, 1985). Other studies have found evidence for such an effect when attributions for group performance were examined but not when attributions for individual performance were examined (Bird & Brame, 1978; Bukowski & Moore, 1980; Gill, 1980). Studies by McAuley and Gross (1983) and by Mark, Mutrie, Brooks, and Harris (1984) failed to find any differences in internality/externality of attributions in relation to competitive outcome but did find differences in causal stability and control. Similar results have been obtained by other investigators; competitive success led to more stable and controllable attributions than competitive failure (Duncan & McAuley, 1987; Robinson & Howe, 1987).

In a review of the literature on success/failure bias in attributions, Weary-Bradley (1978) noted that situational variables could influence the degree to which success was internalized and failure externalized. Scanlan and Passer (1980a, 1980b) as well as Mark et al. (1984) made a similar point by suggesting that situational factors within the competitive environment could be responsible for the contradictory findings in the sport literature. Specifically, these investigators commented on a situational norm in sport that encourages acceptance of personal responsibility for outcomes and explicitly discourages externalization of failure. Faced with these situational pressures, competitors may alter their attributions along the stability and control dimensions rather than the locus (internality/externality) dimension in response to success and failure. This sort of bias may allow them to present themselves as gracious winners or losers and, at the same time, maintain a high expectancy for future success (see Weiner, 1979, 1985).

This "reformulated success/failure bias" (Mark et al., 1984) may clarify some of the discrepant findings in the

Authors' Note: Address correspondence to J. Robert Grove, Department of Physical Education, University of Western Australia, Western Australia 6009.

PSB, Vol. 17 No. 1, February 1991 99-97
© 1991 by the Society for Personality and Social Psychology, Inc.
literature on sport-related attributions. Further research is needed, however, to investigate both the reliability and the generality of this phenomenon. At present, evidence for the effect is limited, and it has come exclusively from studies of attributions made by the competitors themselves. Other sport groups with a high degree of emotional involvement in competitive outcomes (e.g., coaches and spectators) may or may not exhibit biases similar to those of the players. It is also unclear whether factors related to the nature of the game (e.g., margin of victory/defeat) will exert an influence on this form of bias.

The present study examined the dimensional properties of outcome-related attributions made by players, coaches, and spectators at basketball games. In line with other findings in the sport literature, it was expected that competitive outcomes would influence causal stability and controllability rather than causal locus for the players. More specifically, winning players were expected to make more stable and controllable attributions than losing players. Furthermore, the suggestion of a general situational norm against externalization of failure in sport (Mark et al., 1984; Scanlan & Passer, 1980a, 1980b) led to the prediction that this pattern of results would exist for coaches and spectators as well as players. Margin of victory/defeat was also examined for its potential mediating effect on attributional bias. Previous research has indicated that there may be a tendency to attribute ambiguous outcomes (e.g., those that occur by a small margin) more to external causes than outcomes that are less ambiguous (Feather, 1969; Spink & Roberts, 1980). In close contests, this tendency could work against the normative pressures noted above. It was therefore hypothesized that the "reformulated success/failure bias" might be especially evident for games won or lost by a large margin.

METHOD

Subjects

Participants in the study were players (n = 30), coaches (n = 41), and spectators (n = 39) in the upper divisions of two recreational basketball leagues. Men played in one league, women in the other. Both leagues were highly competitive, with divisions based on ability level, published standings, and structured playoff systems. The sample ranged in age from 16 to 35 years, with most subjects between 18 and 28 years of age (M = 22). Approximately two thirds of the subjects within each category were male.

Instrument

A modified version of Russell's (1982) Causal Dimension Scale (CDS) was used to obtain attributional re-

sponses from the participants. The CDS asks subjects to generate a causal attribution for a specific event and then answer nine questions related to the dimensional characteristics of the attribution. These questions assess the respondent's perception of internality/externality, stability/instability, and controllability/uncontrollability for the specified causal factor. There are three items for each of these attributional dimensions, and 9-point bipolar scales are used for all ratings. Responses are made by circling a number from 1 to 9 for each item, so subscale scores can range from 3 to 27. The CDS has been shown to have acceptable psychometric properties when used in both sport and nonsport settings (McAuley & Gross, 1983; Russell, 1982).

Minor modifications that were made to the CDS for this study involved changes in the phrases used to anchor some of the bipolar rating scales. Specifically, the word you or yourself was replaced by you or your team for three of the nine CDS items. Thus, the original CDS anchor Reflects an aspect of yourself became Reflects an aspect of you or your team. Similarly, the phrase Controllable by you or others was changed to Controllable by you, your team, or others, and the phrase Outside of you was changed to Outside of you or your team. These modifications were made to prevent some subjects from interpreting the items on a team-oriented basis while others interpreted them on a personally oriented basis. There is evidence that such differences in interpretation can lead to differences in attributional responses in team sports such as basketball (Bird & Brame, 1978; Bukowski & Moore, 1980).

Procedure

Immediately after a game, subjects were requested to complete a brief questionnaire related to that game. The questionnaire asked for demographics, which included the division of respondents' team, the respondent's involvement category (player, coach, spectator), the team's outcome (won or lost), and the final score of the game. An open-ended attribution was then solicited by the question "In your opinion, what was the single most important factor in determining whether your team won or lost this game?" After writing down an attributional statement, subjects turned the questionnaire over and answered nine questions related to the dimensional properties of their attribution. Responses were made on 9-point bipolar scales anchored in the manner described above.

RESULTS

Primary Analysis

The ratings of causal locus, stability, and control were analyzed using MANOVA procedures. Factors in the analysis were gender (male, female), outcome (win,
TABLE 1: Means and Standard Deviations for the Dimensional Ratings of Attributions Made by Three Types of Respondents Under Winning and Losing Conditions

<table>
<thead>
<tr>
<th>Involvement Category</th>
<th>Competitive Outcome</th>
<th>Attributional Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Locus a</td>
<td>Stability b</td>
</tr>
<tr>
<td>Players</td>
<td>Win</td>
<td>21.67 (3.29)</td>
</tr>
<tr>
<td></td>
<td>Lose</td>
<td>19.80 (6.09)</td>
</tr>
<tr>
<td>Coaches</td>
<td>Win</td>
<td>19.52 (6.11)</td>
</tr>
<tr>
<td></td>
<td>Lose</td>
<td>18.05 (5.08)</td>
</tr>
<tr>
<td>Spectators</td>
<td>Win</td>
<td>19.11 (6.05)</td>
</tr>
<tr>
<td></td>
<td>Lose</td>
<td>18.19 (5.69)</td>
</tr>
</tbody>
</table>

NOTE: High scores reflect high levels of internality, stability, and controllability. Maximum possible score was 27.

a. No significant differences.
b. Outcome effect significant at p < .001.

TABLE 2: Means and Standard Deviations for the Dimensional Ratings of Attributions Made for Close and Not-Close Games Under Winning and Losing Conditions

<table>
<thead>
<tr>
<th>Type of Contest</th>
<th>Competitive Outcome</th>
<th>Attributional Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Locus a</td>
<td>Stability b</td>
</tr>
<tr>
<td>Game close</td>
<td>Win</td>
<td>19.53 (5.52)</td>
</tr>
<tr>
<td></td>
<td>Lose</td>
<td>18.83 (4.89)</td>
</tr>
<tr>
<td>Game not close</td>
<td>Win</td>
<td>19.61 (7.01)</td>
</tr>
<tr>
<td></td>
<td>Lose</td>
<td>17.00 (5.40)</td>
</tr>
</tbody>
</table>

NOTE: High scores reflect high levels of internality, stability, and controllability. Maximum possible score was 27.

a. No significant differences.
b. Outcome effect significant at p < .01.
c. Outcome effect significant at p < .001.

p < .19, but significant differences for causal stability, F(1, 104) = 13.23, p < .001, and controllability, F(1, 104) = 19.61, p < .001. Comparison of group means revealed that winning outcomes were attributed to stable, controllable causes (Ms for stability and control = 12.96 and 19.98, respectively) whereas losing outcomes were attributed to relatively unstable, uncontrollable causes (Ms = 9.27 and 15.86, respectively). As shown in Table 1, this pattern of results occurred regardless of involvement category.

Secondary Analysis

A second MANOVA was conducted to determine whether the dimensional characteristics of the attributions might be influenced by outcome margin (game close, game not close). Factors in this analysis were gender, outcome, and margin of victory/defeat. The margin factor had two levels: "Close games" were defined as those that were won or lost by 8 points or less, and "not-close games" were defined as those that were won or lost by 20 points or more. Ratings of causal locus, stability, and controllability again served as multiple dependent measures.

None of the multivariate effects involving the gender or margin factor were significant in this analysis. Again, however, the multivariate outcome effect was significant, T2 = 15.77, F(3, 69) = 5.11, p < .003. As in the previous analysis, examination of univariate F ratios indicated no difference in ratings of causal locus, F(1, 71) = 1.54, p < .22, but significant differences in the ratings of causal stability, F(1, 71) = 6.33, p < .01, and controllability, F(1, 71) = 12.07, p < .001. Comparison of means again revealed that winning outcomes were attributed to stable, controllable factors (Ms = 12.51 and 19.43, respectively) and losing outcomes were attributed to relatively unstable, uncontrollable causes (Ms = 9.35 and 15.38, respectively).

Table 2 provides a more detailed breakdown of means and standard deviations.

DISCUSSION

The results of this investigation provide support for the reformulation of the success/failure bias proposed by Mark et al. (1984). As in a number of other sport-related studies (Duncan & McAuley, 1987; Gill et al., 1982; Mark et al., 1984; McAuley, Russell, & Gross, 1983), competitors attributed outcomes to internal factors regardless of whether winning or losing outcomes occurred (see Tables 1 and 2). Although competitors also tended to use controllable attributions regardless of outcome, winners rated their causes as significantly more controllable than losers. Responses on the stability dimension tended toward the unstable end of the continuum for all participants, but winners rated their causes...
as significantly more stable than losers. McAuley and Gross (1983) have obtained similar responses on the stability and control dimensions for individuals involved in table tennis matches.

The results of the present investigation also extend the scope of the reformulated success/failure bias to persons and situations not examined in previous research. More specifically, this study demonstrates that this form of bias occurs among individuals other than the competitors (i.e., coaches and spectators) and that it occurs in situations involving team-oriented competition as well as those involving individually oriented competition. In addition, the data suggest that the bias occurs for both men and women and that it is not influenced by the closeness of the competitive outcome.

The rationale put forth by previous investigators for this particular form of success/failure bias focuses on situational norms in the sport environment (Mark et al., 1984; Scanlan & Passer, 1980a, 1980b). Specifically, it has been suggested that a norm encouraging acceptance of personal responsibility and discouraging externalization of failure exists in sport. In order to comply with this norm, individuals may alter their attributions along the stability and control dimensions rather than the locus dimension in response to competitive outcomes. Such a response would be functional in several ways. First, it would permit attributors to present themselves in a socially acceptable manner regardless of whether their team won or lost the competition. Second, in the case of success, such an attribution would imply that winning was due to a relatively stable factor that was under personal control. Thus, future success would be expected, and persistence as well as intensity would be maintained in subsequent practice sessions and games (Weiner, 1985). Finally, in the case of failure, the use of unstable, uncontrollable attributions would imply that success was possible in the future and would minimize negative emotional reactions (e.g., feelings of shame and/or hopelessness). As a result, one would again expect effort to be maintained at a high level (Weiner, 1985).

We have suggested that competitive sport may be unique in its situational pressure for internalization of causes. Other domains of activity may have very different normative pressures, and it is therefore possible that the classic success/failure bias would be more evident in these contexts. Such reasoning is consistent with previous theory and research on self-serving biases. Personal and situational variables such as locus of control, self-esteem, achievement motivation, depression, arousal, and the nature of the task have been acknowledged as potential mediators of these biases (Gollwitzer, Earle, & Stephan, 1982; Pyszczynski & Greenberg, 1985; Stephan & Gollwitzer, 1981; Zuckerman, 1979). In addition, self-presentational models of the self-serving bias have made direct reference to the operation of situational norms in relation to attributional processes. Weary and Arkin (1981), for example, viewed outcome-related attributions as strategic self-presentations and suggested that social norms were among several variables influencing the nature of causal judgments strategically presented to others. Weary-Bradley (1978) made a similar observation and viewed attributions as public self-presentations designed to maximize public esteem. Depending on the circumstances, these esteem needs could either encourage people to accept personal responsibility for negative outcomes or encourage them to deny such responsibility.

The public display of performances and outcomes in competitive sport may increase the salience of self-presentational concerns in that setting. These concerns may, in turn, lead to attributions that, on the surface, appear counterdefensive because personal responsibility is accepted for negative outcomes. In other words, people may attribute losing outcomes in sport to internal factors because they are expected to do so or because they want to avoid being seen as "excuse makers" by coaches, teammates, fans, or the media. Such internalization need not be motivationally detrimental, because attributions that appear counterdefensive along one dimension (e.g., locus) may actually be defensive along other dimensions (e.g., stability, control). Attributing a loss to my own team's lack of defensive effort, for example, implies internality of causation. At the same time, however, it implies that the cause of losing is changeable and that my teammates and I can exert control over the factor in future contests. As Janoff-Bulman (1979) has observed, self-blame can be productive if it focuses on behavioral rather than characterological factors.

Finally, it should be noted that competitive sport may also represent a domain where traditional interpretations of dimensionality may not be valid for some causes. Roberts and Pascuzzi (1979) have argued convincingly along these lines with respect to the factor of ability. Attribution theorists usually consider ability to be a stable factor, but motor ability may have both stable and unstable elements. In basketball, for example, a team's ability would depend to some extent on relatively stable factors such as the size and speed of the players. At the same time, there would also be more changeable components of the team's ability such as offensive and defensive teamwork. This argument is consistent with models of motor performance that acknowledge both general and specific abilities (Schmidt, 1982; Singer, 1980). Task difficulty presents a similar problem in terms of dimensionality. Though typically classified as a stable factor by attribution theorists, task difficulty in sport sometimes
has unstable qualities because it depends on the opponent's level of performance. In sports such as golf, however, task difficulty is more stable because it depends primarily on permanent environmental factors such as the characteristics of the course. Thus, although competitive sport is an excellent setting in which to examine biases in attributions for real-world events, it is also an area that may require some reformulation of existing attributional models to avoid biases in the interpretation of results.

NOTES

1. The involvement category and outcome factor variables were not included in the same analysis because crossing these factors resulted in very small sample sizes for some cells.

2. The selection of 8 points or less to represent a close margin was arbitrary. It should be noted, however, that restricting the analysis to games won/lost by 3 points or less produced identical results. Winners and losers still did not differ in locus of causality but exhibited statistically significant differences in causal stability and control.

REFERENCES


