Consider now a variable of which . . . we know how to find the (smallest) closed system among whose relevant variables it occurs. . . . Thus, we know all the other variables with which our variable "interacts." . . . We know, in particular, how to compute the future as well as the past values of our variables from what we can now measure (provided we also know the past or future boundary conditions). Retrospectively we know, furthermore, what the present value of our variable would have been if some earlier state of the system had been different from what it actually was. Prospectively, we know how to influence its (and other relevant variables') future values by present interference with the system from the outside; and we also know the limits of such interference. What else, I ask, could we possibly want to know about this variable in a scientific way?

—G. BERGMANN, Philosophy of Science

In this chapter we are concerned with the ways in which a theoretical model is put to use. One purpose of any scientific model is to generate predictions about the empirical domain it represents. We have now come to the point in theory building at which predictions occupy a central role for the first time.

To begin this chapter a proposition is defined. Then a distinction is drawn between a proposition and the assignment of an element to membership in a set. Propositions are shown subsequently to be concerned with predictions about the values of units in the system. There follows a discussion of the number of propositions in any given model. Attention then turns to a consideration of critical propositions as distinct from trivial ones. The contrast is then amplified between a law of interaction and a proposition of a model. Finally, the role of negative propositions is examined.
Proposition Defined

A proposition may be defined as a truth statement. It is a truth statement of a special and limited kind. The limitation is that we will consider propositions to be only those truth statements that may be made about a theoretical model. The governing principle for all such limited truth statements is that they conform to some systematic canons of logic for distinguishing true and false to which the model builder subscribes. All the propositions about the models he builds are true by the criteria of the system of logic by which he thinks. This definition of a proposition of a scientific model rules out of consideration all truth statements having to do with the correspondence between the predictions of the model and the empirical domain it purports to represent. This latter issue will be taken up in the next three chapters.

A proposition, then, is a truth statement about a model when the model is fully specified in its units, laws of interaction, boundary, and system states. Any truth statement that can be made about such a system is a proposition of the system.

The term truth should not cause any trouble if it is kept clear of its metaphysical connotations. We could just as well employ the term logical consequence in place of truth statement in the definition of proposition. Care has been taken to state that any system of logic may be employed to establish a truth statement about a theoretical model. This relativity with respect to the system of logic employed makes clear that the truth statements about a model may be changed if the system for defining truth is changed. The only criterion of consistency that propositions of a model need to meet is the criterion that their truth be established by reference to only one system of logic for all the propositions set forth about the model.

It is fashionable in the social sciences to present propositions as the starting point of investigations. This is a useful place to start any empirical investigation. The habit, however, has had a time-wasting consequence. Through the past several decades propositional inventories have been the work of a number of investigators. The goal has been to add up theory by organizing the propositions of a field into subject-matter categories. These inventories have been uniformly useless, and for a now obvious reason. The propositions of one scientific model do not necessarily add up, fund, or bear coherent relationship to the propositions of any other model. To inventory propositions of a field and to try to give order to the totality is to commit the sin of adding noncomparable things.

There is no logic by which the truth statements about one model may be brought into congruence with those of a different model. There may, indeed, be such congruence or identity. If it is found, it results because of some concordance between the different models whose propositions turn out to overlap or to be congruent. This is one of several considerations already set forth in this volume that will be brought together in Chapter 11, where I examine research.

I will simply assert here that a collection of propositions is not a theory or scientific model. This is, perhaps, a jolting conclusion to some social scientists who claim special status as theorists and whose principal output is propositional statements. It may also dismay empiricists who like to believe that their research is theory-linked and who use a proposition as their theory anchor. To theorists I offer the challenge to discover the implicit models from which their propositions derive as truth statements. To researchers I offer the same suggestion. To both I point out their shared interest in scientific models.

In a later section of this chapter that distinguishes propositions from laws of interaction, I will show how a group of propositions may be analyzed to discover the underlying law of interaction from which they are derived. This should prove useful as support for the conclusion that a collection of propositions is not a theory.

Propositions versus Set Membership

It is necessary to make an important distinction between truth statements about a model and truth statements about set membership of units. Much of logical analysis is concerned with establishing the class, or set population, of which elements are members.

The classical syllogism illustrates the problem of set membership: “All men are mortal; Socrates is a man; therefore, Socrates is mortal.” The conclusion here is that the set defined by men plus mortal includes

---

1. An example of a propositional inventory that proved useful is contained in Robin Williams, The Reduction of Intergroup Tensions (New York: Social Service Research Council, 1947), Bulletin #57. This particular propositional inventory was useful precisely because Professor Williams attempted to search out the underlying models from which the collected propositions derived as truth statements. The manner for accomplishing this is discussed in the later section of this chapter entitled “Proposition and Law of Interaction.”

2. Set is here used in the same sense as set theory. “A set is a collection of definite distinct objects of our perception or of our thought which are called elements of the set.” “Elements belonging to a set are determined by the distinguishing characteristics of the set.” Both of these definitions are from Joseph Breuer, Introduction to the Theory of Sets (Englewood Cliffs, N.J.: Prentice-Hall, 1958), p. 4.
Socrates even though we have only established that he is a man and assumed that he must be mortal because "man" and "mortal" go together to define the set in which we are interested. If one portion of the definition is satisfied by the particular case, then the other must be because we assert an invariable connection between "man" and "mortal" in the definition of the basic set. It should be noted that the statement "Socrates is mortal" is not a prediction about Socrates but only a statement of his location within a particular set. It is a truth statement about membership of an element in a set. In this instance, we are locating the element "Socrates" in the set "man," which in turn is wholly included in the set "mortal." This conclusion is not a prediction but an assignment of an element to its appropriate set. If we know the characteristics of the set, and this we must know by definition, then all elements which make up the set possess the set characteristics. Furthermore, any element having the set characteristics is a member of the set.

Much of the statistical procedure is concerned exactly with the problem of locating the appropriate set from which a statistic comes or to which a given element may be assigned. All tests of significance are concerned with locating the universe of which a given statistic is a member. Statistics like differences between means that exceed limit criteria, e.g., a given T value, are considered to lie outside the universe of similarities. That is, the measured difference is so great that there is larger-than-chance probability it lies outside the set of differences. In the same vein, if we examine the statistical techniques employed in handling distributions, a given element is considered to be a part of a set if its value lies within a predetermined sigma value of the mean of the universe. If the value lies outside this predetermined sigma value, then we consider that the element is not a member of the set defined by the characteristics of that universe. In a similar way the logical tests used by Zetterberg in his book *On Theory and Verification in Sociology* are tests designed to reduce redundance in propositional statements by demonstrating that the units of several propositional statements are really members of the same set and that therefore several propositional statements may be reduced to a single one.

The problem of set, of boundary, and of the elements included within the boundary or excluded from the set is an appropriate concern when considering the definitions of units, laws of interaction, boundaries, and system states. It is always presumed that one does not mix elements from different sets and measure their values as though they were elements of the same set. This is a problem we will examine in the next two chapters when we deal with hypotheses and empirical indicators. It is important to know that elements alleged to be from the same set are, in fact, truly so. To reach the conclusion that they are, however, is not a prediction. It is a statement of location of the element with respect to its parent set.

It is obvious that a truth statement may be made about the set membership of a given element. This is not a propositional statement about a model.

A proposition of a theoretical model is, therefore, a truth statement about the model in operation. As we shall presently see, there may be both positive and negative truth statements. In either event, however, they are always statements about the system or the values taken by system units. Propositions are not about the location of the system components in their respective sets.

**Proposition and Prediction**

All predictions contained in a scientific model take the form of propositional statements about the values of units in the model. The propositional statements are predictions because they tell us what must be true about the model in operation if we know the components, units, laws of interaction, boundaries, and system states that characterize the model. Having intellectually constructed his scientific model, the theory builder's curiosity must, of necessity, be turned to a consideration of how the model will function as a dynamic system.

Quite simply, the use of the model is to generate predictions or to make truth statements about the model in operation. Indeed, it is at this point that theory building becomes exciting and thoroughly interesting. The design of a model is, of course, an exacting task. However, to put the model to work, to see what it can do in operation, is the feature of theorizing that makes the game more than worth the effort.

The distinction between process and prediction that was drawn in Chapter 2 may be further clarified at this point. The idea of process is incorporated in the laws of interaction by which the units of a model relate to each other. These laws of interaction are unequivocal statements about how the units are related to each other. As we have seen in Chapter 5, the efficiency of the laws of interaction may vary, but their exactitude of statement is unquestioned. The predictions with which we are now con-
cerned when we examine the propositions of a model are all the truth statements we may make about the conjoined values of two or more units whose relationship is expressed in the laws of interaction of the model.

Campbell\(^4\) pointed out that science always produces synthetic truth statements, and he meant that these are statements that follow as true from the model about which they are made. Since the model itself is a synthetic product, being constructed logically and intellectually by the theorist, all truth statements about the model must also be synthetic. It is important to emphasize the synthetic character of the propositions of a theoretical model. This synthetic quality of the propositions makes clear that we are not talking at this point about the empirical accuracy of the propositional statements.

The sole test of the accuracy of a proposition is whether or not it follows logically from the model to which it applies. Thus, all propositions of a model satisfy logical rules and not empirical rules to establish their truth.

Prediction and Unit Values

I have already indicated that the problem of prediction is a problem of establishing unit values. That is to say, the only thing that can be predicted are the values of the units that are employed in a model. This is so obvious as to need little elaboration. Nevertheless, its very obviousness leads many scientists to overlook this simple and astonishing fact.

It will be recalled from Chapter 2 that a stress was placed upon the distinction between process and outcome. We may now restate this issue in the following terms. The analysis of process is the statement of the law of interaction between two or more units. The process statement is always the lawlike linkage between two units. By contrast, a statement of outcomes is always a statement of a value of a unit or of the values of a number of units. It is the values of the units of a model that are the content of the truth statements represented by the propositions of a model.

The most usual form in which the proposition states the values of two units is the classic "if... then" format. For example: "If an individual is frustrated, then he may become aggressive." This proposition states that a positive value of frustration is associated with a positive value of aggression in a person's behavior.

"If... then" statements abound in science. These are properly labeled propositions. The reason is that the specification of the if clause is always limited to one or a small range of variables, and the same is true of the then clause.

It is even possible to link a number of "if... then" propositions. This is done by employing the value of the unit in the first then clause as the value of the unit in the succeeding if clause. Thus, a chain of propositions would look like the following:

If (a), then (b);
If (b), then (c);
If (c), then (d); etc.

There are those in social science, and Zetterberg is one important proponent of this view, who assert that linked propositions of this sort constitute a theory or theoretical model. We examined one such linked system in the last section of Chapter 2. It should be clear by now, however, that a linked system, no matter how elegant it appears, is no more than a group of logically related propositions. This group of propositions is definitely not a theory or theoretical model. Indeed, it is a difficult analytical problem to construct a model or theory from the statement of a linked set of propositions. This difficulty is serious and may be the very reason why many social science researchers prefer to start their investigations with a proposition, or a series of propositions, rather than with a theoretical model.

Propositions of a model, then, are truth statements, or predictions, of the values taken by one or more units of a model.\(^8\) This may be stated as a concern with the outcomes of a scientific model because the values taken by the units are the outcomes that are observable and measurable on the model.

Types of Propositions

We have now agreed that a propositional statement is a prediction about the values of units in the model. There are three general classes of such predictions, or propositional statements.


\(^8\)Since system states are defined by the values of the units of a model, this conclusion holds for system states as well.
1. Propositions may be made about the values of a single unit of the model, the value of that unit being revealed in relation to the value of other units connected to the unit in question by a law of interaction.

2. Propositions may be predictions about the continuity of a system state that in turn involves a prediction about the conjoined values of all units in the system.

3. Propositions may be predictions about the oscillation of the system from one state to another that again involves predictions about the values of all units of the system as they pass over the boundary of one system state into another. (A special case of this third class of prediction is the case in which the system is destroyed or modified by virtue of penetration of the system boundary.)

These three classes of predictions, or propositions, exhaust the logical possibilities. All propositions about the system fit into one or the other of these three classes. This conclusion makes clear that the task of developing the propositions of a model is more readily undertaken by recognizing that the full range of truth statements is expressed in only three general types.

**Number of Propositions of a Model**

In principle, every model may give rise to an infinite number of propositions. This may readily be seen by examining a linear relationship between two units. The line segment representing the statement of relationship or law of interaction between the two units may be infinitely subdivided so that however great is the number of values on either of the units, it can be made even greater by subdividing those values still further. In the example $Y = a + bX$, there would then follow an infinite number of statements of the order “If the value of $X$ is $k$, then the value of $Y$ is $m$.”

In most social-science models the scales employed in measuring the values of units are not infinitely divisible. Therefore, we may give a practical answer to the question, “How many propositions may be derived from a given model?” The number of propositions is the sum of different ways the values of all the units in the model may be combined with the values of all other units with which they are lawfully related. This turns out to be a large number even with a moderate number of units in the model and values for each unit.

Consider, for example, a model composed of two units, in which unit $A$ has five possible values (e.g., the empirical indicator of the unit is a five-interval Likert scale) and unit $B$ has nine possible values (e.g., the empirical indicator of the unit is an age-class interval of five years between the ages of 20 and 65). There are forty-five different possible combinations of the values of the two units. If there is a lawful relationship between the two units (as must be true, otherwise they would not be incorporated in the same model), then the number of propositions is reduced by eliminating those cells of the $5 \times 9$ table for which the prediction is a zero frequency. (We shall shortly see that the empty cells are the locale of what I call negative propositions, described in the last section of this chapter.) But even this may leave a large number of cells for which the model, to be exhaustive, must predict nonzero frequencies.

We may move further to reduce this number by asking the model to predict only the means of each value of the scale measuring unit $A$ for the corresponding values on the scale measuring unit $B$. There would then be only as many predicted values as there are separate scale intervals on unit $B$. In our example, if we took the mean score on the Likert scale for each of the age intervals, we would have to predict the relationship among only nine mean values from the law relating units $A$ and $B$. But let us further suppose that the theory predicts that there is a linear relationship between $A$ and $B$ and that this may be represented by the succession of mean values of $A$ for each interval of $B$. Then one crucial prediction of the theory would be the slope of the line representing the linkage between $A$ and $B$. We have thus reduced the number of propositions from a potential forty-five to a single one that satisfies our sense of what is important to test in determining whether or not the theory accurately models the empirical domain it purports to represent.

In the process of following through this example, it should be clear that we have successfully turned attention away from the full range of possible truth statements we may make about the relationship between the values of $A$ and $B$ in order to seek out those conjoined values, or that single value, that satisfies us as expressing best their relationship. In short, we have moved toward the strategic proposition by eliminating the trivial ones.

Some kind of parsimony needs to be introduced in the task of looking for and stating the propositions of a model. What is needed is some way deliberately to ignore the trivial propositions. I mean by trivial those propositions that give substantially the same results or outcomes because

*See Chapter 9, "Empirical Indicators."
the values in successive "if...then" statements differ only very slightly from each other and no sensible significance may be attached to these minor differences. This consideration leads immediately to strategic propositions.

**Strategic Propositions**

Strategic propositions are those that state critical or limiting values for one of the units involved. A critical value may be one at which the value of a unit reaches a maximum or minimum point. This would occur, for example, if the law relating to units could be expressed in a curve of a second degree or higher. Another type of critical value may be the value zero for the units. Still another type of critical value may be the value of the unit for which surrounding values on either side change from decreasing to increasing amounts. Critical values are therefore notable because something more than the usual increment of change in value occurs at the critical points.

Limiting values may be the most extreme values beyond which the model predicts that the unit will have no values. In psychophysics the search for auditory and perceptual thresholds requires models that will predict values below which there is no perception of sight and sound. Such limiting values may be absolute or they may represent a limit approached but never reached, as in the asymptote approached by a curve. Limiting values, like critical values, are notable values of the units.

Consider, for example, Figure 8-1. Assume that the formula for the line expresses the law of interaction between $A$ and $B$. Now what are the areas of significant propositions and what are the regions of trivial propositions that may be made about units $A$ and $B$ lawfully interacting as determined by the specification of the curve of their relationship? The answer to these two questions has to do with where something significant is happening on the curve.

Some significant areas are (1) the point $A_1 B_a$, where the curve inflects or changes from increasing at an increasing rate to increasing at a decreasing rate; (2) the region $B_d - B_e$, where significant changes in value of $B$ are accompanied by very minor changes in the value of $A$; and the similar region $B_e - B_b$; and (3) the values $A_c$ and $A_h$, which are limiting values of the relationship. At all these points and regions of values, something significant or attention-attracting is happening in the relationship between $A$ and $B$. Those propositions telling us what the values of $A$ and $B$ are at these points and in these regions of values are the strategic propositions of the model in which $A$ and $B$ are related.

Some insignificant areas in which trivial propositions may be generated are the regions of values between $B_e$ and $B_h$, and between $B_h$ and $B_1$, where small differences in values of $B$ are associated with small differences in values of $A$ and where the direction of shift in values remains unchanged. The propositions describing the values of $A$ and $B$ in these regions are all true but trivial precisely because they say just about the same thing.

In choosing the propositions of a model for empirical testing, it is desirable in the interest of parsimony to select strategic propositions. There is, however, another good reason for testing strategic propositions in preference to trivial ones. The strategic proposition points out where something notable is happening to the values of one or more units. Such notable values readily command attention because they are distinguished from the mundane surrounding values. Therefore, insofar as the theorist-researcher can distinguish strategic from trivial propositions, he is armed with a useful means for zeroing his research attention on critical tests of a model. Whether or not a model will be corroborated or need modification after making the empirical test is more easily determined if strategic propositions have been tested.

**Proposition and Law of Interaction**

The distinction between a proposition and a law of interaction must be understood for several reasons.
The form and content of the two statements are different.
2. The uses to which a law of interaction is put differ from the uses of a proposition.
3. There is an asymmetrical linkage between a law of interaction and propositions of a model such that the propositions are logically derivable from the model of which the law is an integral part, but it takes an inductive leap to go from propositions to laws of interaction.

We shall consider these three points in order.

From the standpoint of form and content, a law of interaction states the relationship between two or more units of a model for the entire range of values over which the units are related by the law. The units are named in the law, but the statement of their relationship covers the full range of values over which the law holds. On the other hand, a propositional statement sets forth the value of one unit that is associated with a corresponding value of another unit. The same units are designated as would be true in a law of interaction. The proposition has specificity with respect to the given value that each unit takes, whereas the law of interaction has generality with respect to all values of the units linked by the law. For example, the statement "Family income and family social status are positively related" is a statement of a law, and the particular family income and particular family status derivable from this law of interaction would take such a form as the proposition "Families with low income have low social status." The proposition is limited to the prediction that low income and low status are positively associated, but is silent on average or high income.

A law of interaction and a proposition have different uses. The law of interaction functions in a theoretical model to provide the statement of the lawful relation between units of the system. By contrast, propositional statements about a model are predictions of the value of one or more units from a knowledge of the value of one or more other units. The law of interaction states the general relationship among units, whereas the proposition predicts the specific values that one unit will have in relation to the values of another. In other words, the law of interaction tells what the relationship is, and the proposition states what the predicted values of the units will be.

The asymmetry in the connection between a law of interaction and a proposition is revealed by the fact that a proposition is logically derivable from a theoretical model of which the law of interaction is an integral part. Given a theoretical system, the application of a set of logical rules will produce the propositional statements that must be true of the system.

Propositions

Given, however, the problem of determining what are the laws of interaction in a theoretical system for which only the propositions are known, a process of induction is required. This is a generalizing operation for which the rules of logic are much less clear and precise than they are for deducing the truth statements, or propositions, of a theoretical model. In short, the intellectual operations involved in going from theoretical model with its laws of interaction to proposition as a prediction about the model are different intellectual operations from those involved in going from a set of propositions to a model and especially to its laws of interaction. The difference makes the relation between laws of interaction and propositions asymmetrical.

An illustration will best serve to draw out the distinction between a law of interaction and a proposition. Homans has set forth the following proposition: "A person of higher social rank than another originates interaction for the latter more often than the latter originates interaction for him." We may add to this a number of related propositions in the following fashion.

1. A person who receives more than he initiates from person A and who initiates more than he receives from person B is in an intermediate rank between A and B.
2. Persons are in the same rank who initiate interactions for each other with equal frequency.
3. In an n-person group in which all members are ranked and no two of whom are of the same rank,
   a. One person will originate interaction for all others more than they will originate for him,
   b. One person will originate least for all others, and
   c. Some members will originate interaction more than they receive from others of lower rank and will be recipients of interaction more than they originate for others of higher rank.

Each of these propositions, starting with Homans's original one and including those I have added, represent truth statements about an unspecified model dealing with origination of social interaction among members of a social group. The analytical problem is now to specify the model, and particularly the law of interaction of that model, that generates these propositions.

The model may first be specified as bounded by a group size such that

---

all members of the group have opportunity to originate social interaction with each other. Any group for which this is not true does not fall within the purview of the model. The model has only one system state, namely that in which interaction between pairs of members takes place. The units of the model are members of a group distinguished from each other only by their differential rank in the system, there being as many distinctive types of individuals as there are ranks. There may be plural memberships in any rank, but the propositions stated deal only with the relations among pairs of individuals according to their rank.

The most challenging task in constructing the model from which these propositions are derivable is to state the law of interaction for the model. One formulation of the law of interaction could be "In a pair relationship, social rank and origination of social interaction are positively related." All the propositions, both Homans's and mine, may now be derived from this model. Each proposition assigns determinant values to the origination of interaction between any two people in the system.

It is readily apparent that this system may be made into a two-state system by permitting interaction in triads rather than in pairs. At least one new law of interaction would have to be introduced to generate interaction relations among three people to take into account the possibility that they may not interact hierarchically, as the initial law for two persons demands.  

We have not, of course, exhausted the number of propositions that may be derivable from the stated model employed in this illustration. It should be clear, however, that a compendium of propositions like these five, or others supplementing their number, does not constitute a theoretical model and that the sum of nonredundant propositions does not constitute a theoretical system.

Negative Propositions

A negative proposition is a prediction of a range of associated values precluded by an affirmative proposition. A negative proposition is therefore based upon the prior ability to formulate a regular proposition in order to negate it. If, for example, it may be asserted that "high family income is associated with high social status," then a negative proposition like "high family income is associated with low social status" may be stated as one of its opposites. The difference between these two propositions lies in the fact that a range of values on one unit cannot be associated with a stated range of values on the other unit. If high income and high status go together, then high income and low status cannot be associated values for these two units.

Negative propositions have an important use in research. Under some often-encountered circumstances, it is difficult to secure empirical indicators for the range of values of a unit that are predicted by a model. At the same time, there are available empirical indicators of unit values that lie outside the range of the model's predicted unit values. By stating the propositions of a model in negative form, it then becomes possible to test empirically its usefulness.

Consider the example of the OSS staff during World War II. It was necessary to develop screening tests to select the most able and reliable candidates for positions as secret agents. As described in the book detailing the work of selection, the tests were negative rather than positive ones on the whole. The model of the good secret agent predicted that he must be decisive, fearless, orderly, and unexcitable, among other attributes. However, it was much more difficult to secure empirical indicators of these attributes than to measure their opposites. Consequently, the tests and selection programs were based on eliminating candidates who had undesirable values on these attributes on the assumption that they would not make good agents and spies.

A comparable situation occurs in determining loyalty to country. The proposition "A good citizen is loyal to his country" is difficult to test, however true it may be. The negative proposition "A good citizen cannot have the value holds membership in subversive organization" is a readily testable proposition. For that reason the test of loyalty may rest on the negative rather than the positive proposition because it is so difficult to find direct empirical indicators of loyalty.

The test of the positive proposition by using its negative is one important strategy in doing research. This strategy is dictated by the availability of an empirical test of a negative proposition that may prove just as useful in evaluating a model as a test of one of its positive propositions.

The negative proposition must not be confused with the null statement. The null statement is an assertion of lack of any relationship between two units. The disproof of the null statement leads to a search for a


lawful relation between the units. The confirmation of the null statement leads to an abandonment of the search for a meaningful relation between the units. The negative proposition, on the other hand, declares a range of values of one unit that cannot lawfully be associated with given values of another unit. The disproof of the negative proposition requires that the model from which it was derived be modified in order to generate the negative proposition as a positive one. The confirmation of the negative proposition leaves the model intact as having been supported by the empirical test.

INTERLUDE THREE

All games have an important... influence on the destinies of the players under ordinary social conditions; but some offer more opportunities than others for lifetime careers....

—ERIC BERNE, The Games People Play

THE CLICHÉ EXPERT TESTIFIES ON THE SOCIAL SCIENCES*

Bernard Berelson
The Population Council, Inc.

Q. Mr. Arbuthnot, I understand that you have undertaken a career as a social scientist.
A. That statement conforms in a high degree to its truth value in terms of reality testing.
Q. What's that again?
A. Yes.
Q. Just what do you do as a social scientist?
A. Oh, many things, some of us hypothesize and others hypothecate.
Q. And what about the others?
A. There aren't any others—except, of course, those who analyze the general context of action.
Q. You mean observe how people act?
A. Well, if you want to put it that way. However, we prefer to see behavioral manifestations in their context of acts, either objective or subjective. That allows us to relate them, of course.

*From a manuscript privately circulated circa 1950s. Used by permission of the author.
THEORY BUILDING

Revised Edition

Robert Dubin

1969

THE FREE PRESS
A Division of Macmillan Publishing Co., Inc.
NEW YORK
Collier Macmillan Publishers
LONDON