LAWS IN MARKETING: A TAIL-PIECE*

A. S. C. EHRENBERG
Aske Research Limited

One of the commonest beliefs about marketing is that it is much more complex and variable than natural science. Physics and chemistry deal with simple, well-behaved and highly regular phenomena. Their study easily yields the absolute and invariant laws of science with which we are all so familiar. In contrast, marketing is thought to be far more complex to study. There are more factors at work. It involves intangibles, human beings, and so on. Nothing is constant. Everything varies. There may never be any stable scientific laws in marketing.

Such comments on the difficulties, the complexities and the instability of marketing processes are only too familiar, both in public and in private. One or two specific references here may suffice. One is to the eight or nine talks by Churchman, Kuhn, Kuehn, Green, Starr, Littauer and others given here at the Market Research Council in the 1961–62 season, edited since by Dr Peter Langhoff (1965) and published under the title Models, Measurement and Marketing. The special complexities and instabilities of marketing problems are emphasized, together with the probabilistic rhetoric with which we are nowadays supposed to grapple with such problems.

The popular view of marketing complexity was also summarized by Professor Charles K. Ramond, as quoted by Buzzell (1963) in the Harvard Business Review: “Variables affecting human behaviour interact to such an extent that the familiar ‘other-things-being-equal’ assumption can lead to mistaken conclusions. Further, physical scientists have generally been able to represent real systems by relatively simple models which can readily be manipulated. But such simple models have not been found adequate to describe human behaviour. And finally, while relationships among physical phenomena are characteristically stable over extended time-periods, marketing is thought to be highly dynamic. Thus, relationships which seem to describe a system at one time may not hold at some future time.”

Personally, I have found nothing in all this talk of special complexities and of new methods which resembles either the known facts of marketing or any successful scientific work that I have come across, whether it was work for establishing generalized knowledge in the first place or work for then applying such knowledge to practical problems. But I do not here want to criticize the detailed past, except by broadly

* A lunch-time talk given to the Market Research Council at the Yale Club, New York, 15th April 1966.
attempting to demonstrate that there is nothing special about studying marketing (or social science topics generally): Ordinary and simple law-like relationships can and do exist, and they can be established by old-fashioned and simple methods of data-handling, such as discovering that variable y varies with variable x under such-and-such a range of empirical conditions, or that so-and-so is a constant.

Laws can be of two broad kinds. There are the scientific generalizations which are directly derived from empirical data, and which for convenience are usually put in a quantitative form. And there are the generalized twaddle kind of laws which are based on insight and armchair experience. Both kinds of law have their uses.

The Fundamental Law of Science

Taking first the twaddle type of law, Ramond (1965) gave us several in a recent editorial in the *Journal of Advertising Research*. For example:

Smith's Law: "If it's worth doing at all, it's worth doing twice."

McAllister's Law: "If you talk long enough, you will say something intelligent", with its frightful corollary:

Corollary: "If you talk long enough, you will say something stupid."

A further armchair or twaddle law to enunciate now is the fundamental law of science, as follows:

The Fundamental Law of Science: "In general, nothing changes."

Corollary: "A lot of factors might affect what one observes, but in practice they don't seem to."

This law has the double advantage of greatly simplifying one's problems and of being true to the facts. If one studies the things which are regular, one will find regularities. Science is as simple as that. All one has to do is to pick on some regular things to study.

This law obviously applies also to marketing. Take any product or brand. Lots of things may vary. But its sales will—*in general*—be pretty much the same as last year. So will the brand's market share and its advertising appropriation and its distribution channels and consumer attitudes and the segmentation of its market. So will the problems of producing the product and of marketing it profitably. Take any sequence of successive market research reports, and all the figures will also be the same from one report to the next: Any figure which looks different and therefore interesting is usually wrong—a coding or computing error.

There may be a lot of "intangible" factors in the situation as well, but they only remain intangible because of the fundamental law's corollary, i.e. because they do not seem to have affected the situation anyway. Thus some of the advertising may have changed, and also the price and the package, and the weather is different too. But sales
are pretty much the same as they were and so these variable factors just did not matter.

The remarkable thing about the fundamental law that in science nothing changes is that it holds not only for "complex" subjects like marketing where our knowledge is as yet very simple, but also in "simple" fields like physics and chemistry where so much is already known that it all becomes highly complex.

Open a textbook on physics to learn about factor X and it is very complicated: factor X is known to vary approximately with so-and-so and so-and-so in such-and-such a manner, as long as variables A and B are controlled and C is negligible, and given that this and that adjustment has been made and all the standard corrections for so-and-so are applied. Outside this limited range of conditions nothing general and systematic is known about factor X at all. Mr L's long series of pre-war results on factor X have been contradicted by 375 experiments carried out under diverse conditions by Professors P, Q, R and S since. Dr Z has thoughtfully suggested that differences in the conditions of observation might have been relevant, but his actual results go in the wrong direction and are internally inconsistent, as well as being discrepant with some French and German findings in 1864 and 1897-98 respectively.

In contrast, open a textbook on economics, on management, on marketing, and it is all very simple: there is nothing there. There is not even any empirical evidence of all these discrepancies which are always said to exist, of all this alleged change and variance! When people state that something in marketing is not or cannot be constant, what they really mean is that they have hardly observed or measured it at all, and almost certainly not more than once!

Yet irrespective of the state of development of one's subject-matter —whether it is physics or marketing—by studying the things which are regular, we come up with regularities: factor X is systematically related to so-and-so under such-and-such conditions. Last year's brand-leader is still brand-leader.

Empirical Generalization

One very real difficulty does arise in establishing scientific laws (i.e. laws with a full empirical content). It is that people tend to overrate the status of any such law, especially in the natural sciences. Thus they will think of the older and simpler type of physical law either as an almost self-evident universal statement or as deriving its validity from some background of "theory", instead of its being simply a description of empirical regularities which have been laboriously isolated under a limited range of specified conditions of observation, and which are equally known not to occur under certain other conditions of observation.

Take for example Boyle's Law in physics. This is that the pressure P of a body of gas goes up as its volume V goes down, and vice versa,
i.e. that \(P \approx k/V \), where \(k \) is some constant. This approximate relationship has been found to hold for different gases, for different amounts of gas, for different containers, different kinds of apparatus and different experimenters. It is what has been found to hold when the pressure goes up and when the pressure goes down, and when the pressure goes up fast and when it does so slowly, and so on. Equally, however, it has been found that pressure does not vary as \(k/V \) when the temperature changes, when there is a chemical reaction, when there is a leak in the apparatus, when there is physical absorption or condensation of the gas, or when we tried to prove the law at school.

Boyle's own empirical results relating pressure directly to volume were only obtained in defending his earlier and more general "Doctrine touching on the Spring and Weight of Air". Indeed, his results relate only to air as such, which he studied in one type of apparatus (of at least two sizes because the smaller one broke), and he spent much time explaining away his (small) discrepancies. But the relationship \(P \approx k/V \) became established as a general "law" only a good deal later, because Boyle's initial work had then been followed by vast and laborious amounts of extremely repetitive and tiresome empirical data collection and analysis: The behaviour of this kind of gas and that kind of gas had been examined, under almost unbearably innumerable different conditions. To repeat: Large amounts of gas and small amounts of gas have been studied. And one kind of container and another kind of container. Pressure going up and pressure going down. Pressure going up fast and pressure going down slowly. And so on and so on. If the law is also known to hold to a close approximation at different times and for different places, this is only because of all the massive and direct empirical observation that something like it has in fact held here and there, in the morning and at night, this year and last year, and so on.

All the cases where the law does not hold involve still further work, still further empirical observation and analysis. Thus it is very much a part of really establishing Boyle's Law to have shown empirically that \(P = k/V \) does not hold when the temperature changes, or when there is a leak in the apparatus, or when there is a chemical reaction or physical condensation—and it has of course also been empirically established that these failures occur for this kind of gas and for that kind, for large amounts of gas and for small ones, and so on.

The apparent simplicity of many scientific laws is only a reflection of all the work which has been done empirically to rule out the complicating conditions where the simple result does not hold (changing temperature, leaks, etc.). The power of a law depends on the extent to which theoretical analysis has shown it to interrelate with other empirical laws and with general background knowledge. But the validity of a scientific law depends only on its range of empirical generalization, i.e. on the different conditions for which it is known to hold or not to hold, as shown by direct observation and analysis.
The Law of Methodology

The same approach of course applies to laws in marketing. All that is necessary is to isolate simple regularities in marketing processes by observing and analysing the extent to which they do or do not occur under all the different conditions of observation which are at all relevant—different products, different brands, different countries and different times, and varying marketing conditions generally. Instead of the common doubts of the “Will it hold over extended time-periods?” or “Will so-and-so matter?” kind, we only need observe and analyse whether or not it does.

To establish generalized laws, we therefore have the basic law of scientific methodology:

The Basic Law of Methodology: “If in doubt, find out.”

Corollary: “If you don’t, you won’t.”

Some illustration of empirical marketing laws derived by this old-fashioned approach may be relevant. Three examples are given. Two are taken from papers published last month, the third is from some more recent work.

The examples concern general laws from three fields: media, consumer attitudes, and purchasing behaviour. They illustrate that although the marketing laws which we can establish at this stage are of course much simpler than the complex laws which are now current in the natural sciences, there is no difference in kind. The complexity of the present-day laws in physics is due to the very much larger amount of work which has already gone into studying the subject-matter there: the physicist already knows so much more, but does not always have the mathematics to describe it very simply and concisely.

Duplication of Viewing

The first example of a simple empirical marketing law concerns some recent results on the viewing patterns of television audiences, as relating for instance to work for JICTAR, and C-E-I-R Inc. and ARB. I hasten to add that the example does not concern itself with the popular O.R. kinds of “media model” which are meant to optimize something. Instead, it is an example of establishing what actually happens, by way of “duplicated” viewing of any TV channel or station at any two specific times on any two different days of any week. For instance, given that 30% of the population view on Monday night at 8 p.m., and that on Tuesday night at 9 p.m. the “rating” is 20%, what is the duplicated audience at these two times, i.e. how many per cent of the population view the station both on Monday night at 8 and on Tuesday at 9?

The traditional view of “everything in marketing is complex and variable” is of course readily countered by simply looking at some actual duplication data. Examination of any table of the duplicated audiences for two days of the week makes the existence of a regular
pattern almost immediately obvious. Thus for some recent data collected by the American Research Bureau, this pattern could be summarized as follows:

(i) The higher the rating at one time, the higher the duplicated audience with any other point in time.

(ii) The tendency for people who view at one time also to view at another time is positive, i.e. there is positive correlation.

(iii) This correlation can virtually all be accounted for by a single constant. Thus the duplicated audience \(d_{ts} \) at times \(t \) and \(s \) with ratings \(r_t \) and \(r_s \) is given by the simple law

\[
d_{ts} = kr_tr_s
\]

where \(k \) is a constant.

(iv) The law \(d_{ts} = kr_tr_s \) holds for the data in question with deviations averaging at a rating point or so. (The larger deviations which occur within these small average limits are not only rare but tend themselves to be highly regular, i.e. susceptible to further lawlike description.)

The audience data analysed here refer to the viewing of station WRBC on Mondays and Tuesdays in November last year in Birmingham, Alabama. It may seem absurd to describe some apparent regularities in Alabama last November as a ‘law’. Will such a result also hold for other pairs of days, and at other points in time, for other stations or in other places, and under other conditions generally? “If in doubt, find out.” All that has to be done is to observe and analyse some comparable data for other points in space and time, and other conditions generally.

Other analyses have therefore also been carried out. They cover so far some sets-switched-on and housewife-viewing data measured by Television Audience Measurement in the London region in January 1966, and the earlier 1959 Granada Viewership Surveys of the adult population of Great Britain. Space and time (including seasons) are therefore beginning to be covered. And also different “kinds of gas” (i.e. the viewing behaviour of individual people and of TV sets), and different measurement techniques (ARB’s weekly household diaries, Tam’s continuous minute-by-minute meter and \(\frac{1}{2} \)-hour diary panels, and Granada’s individual 7-day aided recall interviews). Even the few hundred cases analysed so far therefore begin to cover quite a wide range of empirical conditions, as set out in Table I. And the same simple law—that \(d_{ts} = kr_tr_s \pm 1 \)—continues to emerge.

The Relation between \(I \) and \(U \)

The second illustration of a simple law concerns an attitudinal variable, namely people’s expressed Intentions-To-Buy any stated brand. In work for J. Walter Thompson, no evidence has been found that this variable measures what it says it measures, e.g. in the sense of
predicting changes in people's buying behaviour (Bird and Ehrenberg, 1966).

There is of course nothing unusual or wrong about that (as long as

TABLE I

Empirical conditions under which \(d_{st} = k \sigma_{st} \pm 1 \) is known to hold

\((d_{st} \) is the duplicated audience at two times \(s \) and \(t \) on two different days of the week with ratings \(r_s \) and \(r_t \).)

<table>
<thead>
<tr>
<th>Condition</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any two programmes</td>
<td>1959</td>
</tr>
<tr>
<td>Any two days of the week</td>
<td>1965</td>
</tr>
<tr>
<td>Any two ratings levels from 0 to about 50</td>
<td>1966</td>
</tr>
<tr>
<td>Any two times of day from 2 p.m. to 11.15 p.m.</td>
<td>Summer</td>
</tr>
<tr>
<td>Adults</td>
<td>Winter</td>
</tr>
<tr>
<td>HW's</td>
<td>London, ITV</td>
</tr>
<tr>
<td>Sets on</td>
<td>Great Britain, ITV</td>
</tr>
<tr>
<td>Continuous meter panels</td>
<td>Alabama, WRBC</td>
</tr>
<tr>
<td>Continuous diary panels</td>
<td>Two-channel</td>
</tr>
<tr>
<td>1-week diary surveys</td>
<td>Poly-channel*</td>
</tr>
<tr>
<td>1-week recall surveys</td>
<td></td>
</tr>
</tbody>
</table>

* The phrase "poly-channel" has been devised by Mr N. L. Webb to distinguish multi-channel viewing situations with three or more operating channels from the two-channel situation which has been traditional in Great Britain until recently.

one knows). After all, in physics and in everyday life one does not look at the length of a column of mercury in a glass tube just to see how long a column of mercury in a glass tube is, but as a measure of something quite different—temperature or pressure, or whatever it is that empirical validation has told us the length of this particular type of mercury column is correlated with.

In thus empirically investigating the percentage \(I \) of people who express an Intention-To-Buy the brand in question, it was found that this variable tends to be systematically and closely related to the current Usership level of the brand. Thus \(I \) is directly proportional to

TABLE II

Empirical conditions under which \(I = k \sqrt{U} + 3 \) is known to hold

\((I \) is the % of informants expressing an Intention-To-Buy a brand which is used by \(U \% \))

<table>
<thead>
<tr>
<th>Condition</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Intentions-To-Buy levels ranging from 0% to almost 100%</td>
<td></td>
</tr>
<tr>
<td>The 4 to 10 leading brands in each product-field</td>
<td></td>
</tr>
<tr>
<td>Brands with stationary usage level</td>
<td></td>
</tr>
<tr>
<td>Brands with increasing usage level</td>
<td></td>
</tr>
<tr>
<td>Brands with decreasing usage level</td>
<td></td>
</tr>
<tr>
<td>Great Britain</td>
<td></td>
</tr>
<tr>
<td>U.S.A.</td>
<td></td>
</tr>
<tr>
<td>Demographic sub-groups (young, old, etc.)</td>
<td></td>
</tr>
<tr>
<td>From 1960 to 1966</td>
<td></td>
</tr>
<tr>
<td>Summer/Winter</td>
<td></td>
</tr>
<tr>
<td>Usage measures varying from "Ever Use" to "Used in last 7 days"</td>
<td></td>
</tr>
<tr>
<td>Several Intentions-To-Buy measures</td>
<td></td>
</tr>
<tr>
<td>Different product-fields, including beer, biscuits, breakfast cereals, chocolate assortments, chocolate bars, corned beef, cough syrups, frozen foods, indigestion remedies, margarine, meat extracts, milk drinks, shampoo, tinned soups, toilet papers, toilet soap, voluntary grocery chains, washing powders, washing-up liquids</td>
<td></td>
</tr>
</tbody>
</table>

AS H
the square root of the percentage \(U \) of informants who currently use the brand, i.e.

\[I = k \sqrt{U}, \]

within a mean deviation of about 3 percentage points for the discrepancies \(|I - k \sqrt{U}|\) on the 0 to 100% scale of Intentions-To-Buy. This simple relationship between \(I \) and \(U \), which has already been briefly quoted by Ramond (1965), is known to hold under a wide range of empirical conditions (Table II). Thus, \(I \approx k \sqrt{U} \) holds for large brands and small brands in each product-field, and for brands with stationary and with fluctuating usage levels. It holds, with different values of the single parameter \(k \), for some 30 different product-fields investigated by JWT so far, and for various different measuring techniques. It holds at different points in time stretching back over five years or more, and in Great Britain and in the U.S.

The law differs from the first example \(d_{ts} \div kr_x \),—the duplication law—by already fitting in with other pieces of knowledge. For example, it quantifies the common notion that people cannot effectively say what they want (except more of the same) and it seems to clash with various speculative consumer theories of advertising formulated as sequences of the awareness→intention→purchase kind.

At a more down-to-earth level, it is also known (a) that current users of a brand virtually all say that they intend to buy it again, and (b) that for current non-users such an intention varies with the recency or the frequency of their past usage (if any) of the brand. This additional empirical knowledge (Bird and Ehrenberg, 1966) explains the shape of the \(I = k \sqrt{U} \) type of relationship.

It also explains two systematic deviations from the \(I = k \sqrt{U} \) norm which would otherwise appear quite paradoxical. These deviations occur within the average limits of fit of \(\pm 3\% \) and apply to successfully launched new brands and to slowly dying old brands respectively, as follows:

(i) \textit{Fewer} people than the norm say they intend to buy successful new brands (but more people do in fact buy them subsequently).

(ii) \textit{More} people than the norm say that they will buy dying old brands (but fewer people go on buying them in the long-run).

The explanation is that the “tail” of past users for a new brand is necessarily short, relative to its current usage level, and it is this incidence of past users which essentially determines the level of expressed Intentions-To-Buy. Conversely, an old, slowly dying brand has a long “tail” of past users, which is reflected in its relatively high level of expressed Intentions-To-Buy.

\textit{The Purchasing Constant 1.4}\

The third illustration of quantitative marketing laws takes the simplest possible form which any law can take, namely that of an absolute constant. This is one of two special points of interest. The
other is that this constant is part of, or derivable from, a fairly advanced empirically-based theory or system of laws. The theory concerns consumer purchasing behaviour, as studied for example for Unilever and Cadbury’s, Esso, ICI and J. Walter Thompson (Chatfield et al., 1966). It deals with any brand of frequently bought consumer goods under stationary conditions, i.e. for the common situation where there is no trend from one time-period to the next. Consider \(p \) time-periods, and the proportion of the consumer population who buy \(r_i \) units in the \(i \)th time-period (of length \(T_i \)), and \(r_j \) units in the \(j \)th period, etc. It is then found empirically that this proportion can be represented by the coefficient of \((u_i)^{r_i}(u_j)^{r_j} \ldots \) in expanding the expression

\[
\left\{ 1 + a \sum_{i=1}^{p} T_i (1 - u_i) \right\}^{-k}
\]

in powers of the dummy variables \(u_i \), \(u_j \), etc., where \(a \) and \(k \) are two empirical parameters specific to the brand.

This simple descriptive device has in effect been found to model stationary purchasing behaviour for brands in all the 30 or so different product-fields so far studied, of both food and non-food types. The theory has generally been found to describe some thousands of different cases, covering a range of conditions summarized in Table III.

Table III

Empirical conditions under which various aspects of the stationary purchasing model are known to hold

<table>
<thead>
<tr>
<th>Percentage of buyers ranging from almost 0% to 50% or more</th>
</tr>
</thead>
<tbody>
<tr>
<td>The 4 to 6 leading brands in each product-field</td>
</tr>
<tr>
<td>Large, medium and small pack-sizes</td>
</tr>
<tr>
<td>Great Britain</td>
</tr>
<tr>
<td>Continental Europe</td>
</tr>
<tr>
<td>U.S.A.</td>
</tr>
<tr>
<td>From 1950 to 1966</td>
</tr>
<tr>
<td>Summer/Winter</td>
</tr>
<tr>
<td>Different demographic sub-groups (size of household, etc.)</td>
</tr>
<tr>
<td>Buying behaviour in periods of 1 week to 6 months or more</td>
</tr>
<tr>
<td>Different product-fields including bread, breakfast cereals, butter, canned vegetables, cat and dog foods, clothing, cocoa, coffee, confectionery, cooking fats, detergents, disinfectants, fruit drinks, household soaps, household cleaners, jams and marmalade, margarine, petrol, polishes, processed cheese, sausages, shampoos, soft drinks, soup, toilet paper, toilet soap</td>
</tr>
</tbody>
</table>

The model subsumes all quantitative aspects of stationary purchasing of any given brand. For example, the increasing penetration of any brand in longer time-periods is successfully described by it, and repeat-buying behaviour in successive equal time-periods. It also deals with the frequency distribution of the different amounts bought in any single time-period: Thus, the proportion of a brand’s total sales which is accounted for by buyers of more than \(r \) units in the time-period (\(r \) being any number) is given by a one-parameter expression. For it follows from the theory, and is found to be true in practice when the
parameter k is small compared with a, that this proportion is simply q^r, where $q = a/(1 + a)$ in terms of the first of the two parameters a and k of the model.*

However, an even simpler specific law of stationary consumer purchasing behaviour is that the people who buy a brand in one time-period but not in the next will in that first time-period buy an average of about 1·4 units of it.

This approximate constant can be theoretically derived from the model. Since this model of stationary purchasing generally holds in other respects, the constant deducted from it should in theory also hold, i.e. for any product-field, for a large brand or a small brand, for a brand with many repeat-buyers or one with few, and irrespective of the length of the two periods in question (weeks, months, quarters, etc.).

And in practice it does hold. Thus for stationary brands it has been found (Chatfield et al., 1966) that Britons who buy anything in one time-period but not in the next, buy on average about 1·4 units of it.

And so do Americans. A re-analysis of some of the purchasing data for the Chicago Metropolitan Area published by George Brown (1952) has recently been completed by Girms of University College. American households who in 1951 bought a then-stationary brand of—to be specific—margarine like “Parkay”, “Allsweet”, “Good Luck” and “Nutley”, or a stationary brand of detergents like “American Family Flakes”, “Tide” and “Rinso” (pack-sizes I and II) in one time-period but not the next, also bought on average roughly 1·4 units. Thus

$Monthly$: Buying in one month but not the next—
Average amount bought $\approx 1·5$ units,

$Quarterly$: Buying in one quarter but not the next—
Average amount bought $\approx 1·4$ units.

These data are subject to considerable sampling error since the number of such buyers in Brown’s sample was only about 5 to 10 households per brand, but the fit seems good enough.

$Laws of Inhibition$

The above results illustrate that it is easy to find stable and simple laws in marketing. However, it would be disingenuous and indeed misleading to pretend that many such laws have yet been established. Very little integrated and generalized quantitative knowledge about marketing processes exists so far. For this situation, four quite unnecessary laws appear to be causally responsible:

* The condition $k \ll a$ refers to the so-called “variance discrepancy” (see reference cited). The parameter a can be estimated from w, the average amount bought per buyer in the time-period, by solving the implicit equation $w = a/\ln(1 + a)$ or the explicit approximate formulae $\frac{a}{\lambda} \approx 1·23(w - 1)^{1·5}$.
The Law of Empirical Inaction: "If still in doubt, just assume something."

The Law of Perpetually Promising Pseudo-Probabilistic Paraphernalia: "It is a well-known statistical procedure and may this time give a clearcut and lasting result."

The Law of the Ignorant Problem-Solver: "I know nothing of your subject-matter, but have techniques and will sub-optimize."

For further reading on these four laws, the initial reference and textbooks on "modern" scientific methods and experimental design, on multivariate analysis, Bayesian theory and statistical analysis and inference generally, and on O.R. techniques, may be helpful.

The discussion following this talk has shown that there are three further laws of inhibition which had been prematurely pensioned-off. They are of course:

The Law of the Man of Action: "I am too busy pretending to solve today's problems to tackle tomorrow's before it is again too late."

The Law of the Practical-Minded Manager: "I cannot invest in basic research unless I know how to apply the results before you know what they are."

The Law of Keeping Secrets from Oneself: "We must keep the results from our competitors even if it means not getting them ourselves."

These seven laws seem to account for most of the near-constant tendency to do virtually no long-term basic research into marketing phenomena. This particular finding holds in this country and elsewhere, and so far also across time.

Acknowledgement

This talk is largely based on some work which is being carried out for Research Bureau Ltd (Unilever) on regression analysis and the derivation of quantitative relationships.

REFERENCES

Brown, G. H. (1952). Brand Loyalty—Fact or Fiction? Advertising Age, 23 (June 9 and October 6).

