THE INEVITABILITY OF HISTORICAL EVIDENCE IN GENERATING MACROMARKETING KNOWLEDGE

A. Fuat Firat, Appalacian State University

Abstract

This paper discusses and raises questions regarding science and the scientific method, in general, and, in particular, reconsiders the usefulness and/or relevance of the logical empiricist scientific method for macromarketing knowledge generation. Discussing the four major flaws of the positivist philosophy of science and its methods, as well as the nature of reality, it argues that the use of historical evidence through interpretation and critical analysis is inevitable for developing scientific macromarketing knowledge. Based on other historical philosophies of science, a new philosophy for scientific analysis of historical evidence is introduced. Finally, the importance of macromarketing for scientific discourse in marketing is briefly discussed.

Introduction

The purpose of this paper is to discuss and raise questions regarding science and scientific method in general, and, in particular, to reconsider the usefulness and/or relevance of the scientific method (as defined by the now dominant philosophy of science, positivism) logical empiricism/logical empiricism for macromarketing knowledge generation. Also, I am interested in investigating the role of macromarketing within the marketing discipline in terms of scientificty.

Clearly, there is greater interest in macromarketing within the marketing discipline as evidenced by this AMA conference specifically concentrating on macromarketing. I think that we have three reasons for this interest. These are (i) emergence of marketing scholars with a social scientist orientation, (ii) recent interest on the part of some marketing and, especially, consumer behavior scholars in anthropology, sociology, economics, and political science, and (iii) the critiques of marketing practices and institutions at the macro level from many different perspectives and ideological stances. Particularly due to persistent criticism of marketing at a more general level than specific behaviors of individual marketing organizations, many scholars have begun to realize the inadequacy of micro level responses to macro level critique. Consequently, more systemic and macro analyses are now heard, noticed, and written.

With increased efforts toward developing macro level frameworks, theories, and analyses has come the realization of the poverty of the scientific methods we present today; particularly the logical empiricist methods. Empirical findings in verifying temporal and contextual facts, truths, and relationships (for which I shall use Foucault's (1972) terminology "positivity", from here on) are just fine. They do provide for us glimpses into the status quo (state of affairs as they exist at the time of the findings). They are, however, just glimpses and they do present problems such as theory-fact interdependence (Bagozzi 1984, Oliva and Reidenbach 1987), method dependence and reductionism (Feyerabend 1975 and 1981), and ideological rather than scientific interpretation (Firat 1985a). If the findings from these empirical studies are accepted within reasonable bounds, and they are given correct interpretations, they will be very helpful in scientific endeavors. The problem with contemporary dominant philosophy of science, positivism, is that it advocates and practices complete dependence on such empirical findings for "scientific" inferences and conclusions. This is a major mistake, however, because of major flaws in the logical empiricist method.

Problems With the Current Approach to Science

I wish to briefly discuss some of the major problems with the dominant contemporary approach to science, especially as they relate to macromarketing studies, before presenting a new and alternative philosophy of science. For the purposes of this paper, I want to discuss four major flaws in positivism/logical-empiricism.

Current Approach Is Ahistorical. Probably, the most important flaw in positivist philosophy of science is its ahistorical approach to facts (Fullerton 1987). Given the desire in positivist science to develop lawlike generalizations and universals (Hunt 1976 and 1983), there is a tendency among scientists who belong to this school to generalize from facts that they discover using logical empiricist methods. Examples of such tendencies abound in all disciplines. Leadership studies (Bird 1940, Mann 1959, Stodgill 1974), for example, which satisfy all criteria of validity in experimental designs, and tend to find that a leader emerges when total strangers are randomly put together and are given a task to perform, become the foundation for inferences that leaders will always emerge in human society. Clearly, such lawlike generalizations omit the sociohistorical background of the experiments. No matter how randomly these subjects who are strangers to each other are selected, they have been exposed to similar social conditioning within their society. Thus, really, the emergence of leaders is a particularity of the society they belong to, not a universal across time and contexts.

The only scientific solution to such negligence of sociohistorical processes is a historical perspective where an effort is made to explain the emergence of observed facts within their history. But such history is generally impossible to capture through logical empiricist methods. All the complex events which have historically produced the facts we now measure are history. We are left with at least two alternative approaches. To deny the history since we cannot verify it using our methods, and positivist facts are an accidental, contem-
whatever historical evidence we have. Positivism is against any interpretation of such historical evidence since they cannot be methodologically verified. This brings us to a second flaw in contemporary approach to science.

Current Approach Defines Science on the Basis of Methods. History of science clearly indicates that science is a philosophy, yet in the effort to gain acceptance for the institution of science in the Seventeenth Century and later, science has become to be defined and defended on the strength of its methods (Firat and Dant 1987). Defining science on the basis of methods creates major problems. These have been well exposed by Feyerabend (1975) and others (c.f., Kuhn 1962, Adorno 1982). The institution of science comes under suspicion whenever it is recognized that some of the major scientific advances have been achieved without adherence to the accepted methods, and that if the methods were followed these advances would not have occurred.

Science is a philosophy, not a list of methods. Methods are only means for achieving philosophical ends. As the discussion in the previous section should indicate, collecting temporary facts through methods identified by logical empiricists does not provide scientific conclusions. The positivist approach of generalizing from such facts is, in fact, ideological (Firat 1985a). Scientific conclusions can only be achieved through a sound philosophical approach to interpreting positivities verified through empiricist methods. Mere verification of empiricity of phenomena does not represent or reflect reality in its essence. Rather, they are appearances which many times may, in fact, confuse our ability to recognize essential realities.

Realism, as a philosophy of science, tries to overcome this distinction between apparent positivities and essential reality by devising rules of correspondence between constructs at a level of abstraction which describe essential regularities and empirically measure variables (Bagozzi 1984). However, because realism still tries to build its philosophy upon methods of verifying such correspondences, and because it lacks a historical approach, it has major problems (Firat 1986, Oliva and Reidenbach 1987). Specifically, the constructs are defined universally and measured unidimensionally when they are temporal and most probably may be multidimensional.

No matter how sophisticated the methods are, definitions of science based on its methods are most likely doomed to failure. We need to develop a philosophical, rather than a methodological definition of science.

Current Approach is Absolutist. Positivism considers there to be an absolute and universal truth independent of human thought which can be discovered through scientific methods. This aspect of positivism has been relativist philosophies, and modified by realism. Realist philosophy accepts the existence of a reality independent of human thought or theory, but recognizes that “data and theory (need to be regarded) in an inseparable and reflexive way” (Bagozzi 1984: 18). Relativism, on the other hand, rejects the existence of a single “absolute” reality. Rather, for the relativist there are many realities primarily because a single perspective of observing “reality” is impossible. Consequently, we order our experiences differently, and perceive and live different realities.

I do not intend to go into the discussion between relativists and rationalists or positivists since this is well known (Anderson 1983, Hollis and Lukes 1982, Muncy and Fisk 1987). The concept of “reality” is a difficult one, and I intend to discuss it at some length later in this paper. Let it suffice at this point to say that the idea of an absolute and universal reality is highly suspect, not only in social science but also in natural science. Heisenberg’s principle of uncertainty (Hofstadter 1981) is a clear indication of this.

Current Approach Favors Prediction over Explanation. Positivism and the statistical analysis techniques upon which it relies heavily for scientific inferences emphasize the common, the normal, the average and averages. As a matter of fact, one could call this tendency the accountancy of recurrences. Given this perspective, that which has the highest number of recurrences has the highest weight and confidence. This approach, consequently, emphasizes predictive validity (Firat 1986). We have the greatest confidence in recurrence of what has occurred most often in the past. This is best represented by the averages, or in general, by measures of central tendency of phenomena. More often, however, gloss over the variant characteristics, compiling all and representing them in terms of the norms. This is exactly when such approaches are antithetical to explanation and understanding, which are the historically claimed objectives of science (Russell 1945). Explanation, which is required for understanding, necessitates analysis of the contingencies and exceptions to norms. That is, not the norms or averages, modes, and medians, but variations, specificities, and contradictory phenomena point to or guide explanations. The history of science is full with examples of major leaps and advancements of knowledge based on such explanation. Two most fundamental developments in science bear witness. Darwin’s theory of natural selection was founded on the interpretation of the exceptional characteristics in the species, specifically observed on the Galapagos Islands, and Einstein’s theories of relativity were founded on the recognized exceptions in the rules of geometry beyond limited regions of space and his interpretation of these exceptions in light of the puzzles of his day, namely constancy of the speed of light and the meaning of motion (Firat 1986, Zuck 1979).

Why is it that exceptions, and not rules and norms explain phenomena? Because recurrences, especially dominant, overwhelming, or majority occurrences, constitute norms and rules, and which are measured by central tendency measures, define and represent existing generalities. As such, they gloss over and compound the specifics and varied characteristics. Also, they identify the stable elements rather than the seeds of
change. Rules and norms represent phenomena that dominate and suppress others, thereby concealing the dynamics and preserving the status quo. But what is status quo at a certain period in time does not explain phenomena, it renders them tautological. Why a phenomenon exists at a certain point in time cannot be explained through its existence but through the dynamics of the process which produced it. That is, not status quo but change is explanatory. What causes dominant recurrences is representation of the obvious, and its expression is a tautological absurdity: The phenomenon is because it is! Explanation can be achieved by investigating why and how norms became norms, and the clues to this at present are in the exceptions, those phenomena which contradict or differ from the norms.

Implications for Macromarketing

There are differences in definitions of macromarketing and of its domain (Chaganti 1981, Dixon 1984, Firat and Dholakia 1977, Fisk 1982, Heede 1981, Hunt 1981, Shawyer and Nickels 1981, White 1981). Some define the emphasis of the marketing activity -- channels of distribution versus retailing chains, for example -- while others identify the domain of macromarketing in terms of a systemic or societal perspective. Considering macro analyses and theories in some of the social science disciplines, such as economics, sociology, political science, and anthropology, the latter approach to defining macromarketing seems to have more relevance to the purpose at hand. Understanding the systemic or social implications of marketing behaviors and the impact of systemic or social realities upon marketing behaviors.

If such understanding is the purpose, the "scientific" methods utilized in the micro marketing and consumer behavior research and/or studies are, indeed, not pertinent, sufficient, or meaningful for macromarketing studies. Reasons as to why a marketing system developed as a solidified, regulated, and imperfectly competitive capitalist system, for example, influenced marketing behaviors and helped shape marketing processes in North America cannot be studied using the empiricist methods, such as the survey or the experiment. Many relationships that played a role in such developments and transformations are no longer existent or have become modified. Furthermore, it is not possible to expect a historical process to occur exactly in another country's development. The social systemic history of these phenomena cannot be replicated and what was in the past cannot be measured in the present. Neither can alternative social formations and systemic relationships that could have occurred or could occur in the future be empirically studied. For example, we cannot study empirically if the marketing system would satisfy needs better if a socialist economy presently developed in the U.S.; or we cannot use empiricist methods to study the existence at a certain point in time, or exist in children's need satisfaction levels if all children were to be raised not by individual families but by socially organized institutions. As exhibited by these rather radical examples, empiricist methods can be used to study the status quo, but not the social, systemic alternatives at macro levels. Any attempt to do so at a scale less than societal would not be valid. The dominant relationships in the surrounding social culture would render the small scale experiment invalid as in the earlier example of leadership studies.

The poverty of the empiricist method in explaining and capturing the macro phenomena is well expressed by Bendix (1984). He shows how it is impossible to study phenomena that shape macro events across long periods of time and complex interrelationships using experiments or descriptive designs. Clearly, the logical empiricist methods are imprisoned within the temporal societal formations, structures, and relationships. All such methods can accomplish is documenting, replicating, reconfirming, reproducing, and compiling temporal realities. Using empiricist methods we are reasonably confident that positivities we measure are "real," or that they exist at a certain point in history and in a certain context assuming commonalities in sensory mechanisms of human beings. This use of reasonable confidence does take into consideration the interrelationships and facts as discussed in the realist science literature (Bagozzi 1984, Oliva and Reidenbach 1987).

Just as the ahistorical approach in contemporary science and its dependence on methods for distinguishing itself from nonscience create problems in studying macromarketing phenomena, so do the other flaws of the logical empiricist methods render them only partially useful. Macro phenomena such as those of interest to macromarketers require explanation much more than prediction since individual marketers are more often likely to react to such phenomena rather than try and manipulate them. And, even if their purpose was to manipulate the macro environment, simple causal relationships would not be sufficient for such control, requiring an explanation of the more complex holistic. Relevance of the current methods of science to prediction rather than explanation, therefore, diminish the use of empirical methods for macromarketing. Expecting to find absolute universals, on the other hand, create problems when macromarketers try to study marketing systems in different cultures or across time. Major ethnocentric conclusions are arrived at, and constructs developed in one culture, or based on the history of one culture are imposed upon other historical processes and cultures. In other words, realities that belong to a certain period in time or to certain contexts become barriers to recognizing realities at other times or in other contexts.

The Concept of Reality

The interdependence of theory and fact, the dependence of identifying reality upon intersubjective certification (Hunt 1983: 243), and particularly, the possibility that different realities may exist, or that reality is forever transforming require that the concept of reality be discussed before any new philosophy of science is advocated.

Are realities relative or are there indeed absolute realities independent of human
cognition and time? I wish to propose that there are different levels of realities, and discussions of "reality at a given time" and discriminate among these levels of reality are likely to be confusing and scientifically not fruitful. Let me try to explain.

The first level of reality is reality at the empirical, immediately measurable or observable level. These are realities such as "rock is hard," "people exchange goods for money in markets," "repetition results in more positive attitudes on the average," etc. Some of these realities are more durable, that is, they can be verified over longer periods of time. However, such realities do not per se enable understanding or explanation. They are just indicators, observations, or raw materials of understanding. To get at meanings, or to answer the question of why (for example, why is rock hard?) further investigation is required. At this level of seeking realities human beings seek essences. The essence of a rock, for example, based upon chemical and physical constants only (such as its longness with such qualities, we try and build constructs and relationships which we interpret to be the reason for "hardness." The concept of "hard" itself is, of course, a construct based on human experience. Since the human experience is historical, the construct of "hardness" is temporal based on changing historical experiences. That is, although the terminology may remain the same, the meaning of the concept can and does transform.

Consider, now, the rock and the molecules it is made of. Our experiences with atomic physics through history have continuously required that we modify our concept of an indivisible unit. As our conceptualization changes the essential reality as we know it is modified. Is this because the reality is transformed or are we better able to grasp a reality which is there? At this level of reality, which I call essential reality, I tend to agree with the relativists. There is a reality "out there" independent of how we perceive it, but given the space-time dimensional positions we as human beings are presently commonly occupying. That is, as long as the human species has common limitations upon its senses, there is an essential reality common to all human beings. One example of such a reality is that the Earth is in a galaxy, and it revolves around the Sun. Now, this is a primitively, empirical or observational positivist, one common to all humans on Earth. The essential reality we seek is why this is so, and our conceptualizations interpret the essence in terms of forces (gravity—or warped space?), mass, and energy, along with other concepts. Realize, however, that the reality is temporal, despite the fact that such physical reality takes such longs with time to transform. Clearly, the relationships in our solar system and our galaxy are changing with time, as is the idea that the Earth is a flat disk. This level of reality is the result of the principles of quantum theory, and efforts for a Grand Unified Theory, our concepts of force, mass, and energy may also be in the process of transforming.

The social context may provide a better example since the transformations of essential as well as apparent realities are relatively faster (faster being a concept given the human common experience with time). Consider, for example, the reality that the government in a relationship will control decisions. Here are two concepts at some level of abstraction: power and control. In current literature these constructs are defined based upon the contemporary experience, one which is the result of a historical sociopolitical process with changing power structures, power sources, and democratic processes this "reality" will most likely change. Imagine, for example, a social formation where power differentials are no longer existent. The physical laws will go through a definitional transformation, such as has occurred with the concepts of family and marriage, and the relationship "power results in control" will no longer be a "reality."

Clearly, then, apparent realities (positivities), directly empirically measured, as well as essential reality inferred through analysis and interpretation of apparent realities, is subject to change based on historical processes in such positions that such qualities, we try and build constructs and relationships which we interpret to be the reason for "hardness." The concept of "hard" itself is, of course, a construct based on human experience. Since the human experience is historical, the construct of "hardness" is temporal based on changing historical experiences. That is, although the terminology may remain the same, the meaning of the concept can and does transform.

The two levels of reality discussed briefly (apparent reality and essential reality) are very much earthly realities. That is, given the same senses and limitations, they can be common to all human beings within the same contexts and time periods. Human beings are, however, severely limited in their senses, and are constrained within the dimensions of our universe. Einsteinian physics clearly indicates that were human beings able to move along the time dimension, their physical experiences (in terms of their subjection to forces, bodily processes, etc.) would be quite different. Were we to move at speeds close to the speed of light, for example, we would experience Earth as a flat disk rather than as a globe. At this level of what I call quantum reality, we recognize that realities are relative not only due to the history but also to the size of the dimensions. (Plural, because along with space-time, physicists who work with the Grand Unified Theory suggest probable existence of other dimensions currently unknown and unexperienced by us.)

Quantum theory, as it is currently understood, incorporates the principle of uncertainty as developed by Heisenberg (Hofstadter 1981). This principle suggests we cannot measure the total reality at once, nor can we measure something without interfering, and therefore,
changing it. Thus reality is for us always uncertain. There are, consequently, many scientific contradictions in such atomic realities as we know them. A well known example is entities exhibiting qualities of both particles and waves. Bohr, one of the foremost theoreticians of atomic physics, has tried to resolve this problem through the framework of complementarity (Folse 1985). Inspired by the new problems quantum physics presented, Bohr developed this framework as a way of looking at contradictions among facts. To me, it seems like a very enlightening and meaningful perspective for advancing human understanding. Briefly, it is a framework which advocates constructing conceptualizations that integrate what are seeming contradictions instead of insisting they are contradictions and searching to verify one while rejecting the other based on our past limited conceptualizations. This framework is consistent with both a dialectic perspective (Colletti 1979) and the Eastern philosophies (Capra 1983). When the seeming contradiction in reality are so or otherwise resolved, there are indications that we may move to another level of reality, one of interrealities which are both simultaneous and transforming, or continuously enfolding and unfolding (Bohm 1985).

A New Philosophy

Considering, then, that reality is ever-transforming and ever-reconstituting, what should be the main principles of a new approach to science? One obvious principle needs to be the recognition that we should not seek a single, eternal, and universal truth. Instead, we need to seek to understand how phenomena interacted historically to produce the present conditions that surround us.

Phenomenology, hermeneutics, and critical theory present new historiography approaches to science recognizing the historical nature of reality (Gadamer 1975 and 1976, Habermas 1971 and 1977, Ricoeur 1981). Specifically, these approaches use critical analytical interpretation for rational (and what they consider to be scientific) conclusions based upon knowledge of current and historical ideologies limitations on human thought and conceptualizations due to particular historical experience and biological constitution of human beings, and also upon the cognition that all explanation is conceptually inexact (that efforts at reduction in order to achieve precise measurements and causal links always result in truncating, and therefore, losing sight of "reality"). The solution by the above philosophies to the problem, then, is to provide rational historical analyses. Science, according to these philosophies, is achieved through thorough analytical reflection.

In a way, the separation of the scientific enterprise into two domains -- the context of discovery and the context of justification -- as done by the positivists, who then consider true science to be practiced in the domain of justification (Bachelard) which has been rejected by historical philosophies of science. The earlier discussions in this paper regarding the flaws in logical empiricism/positivism and the nature of reality tend to lend support to such historical philosophies. Hanging onto the methods to define science, especially when the methods are unable to handle complex realities, as well as contradicting positivities, is more an indication of trying to preserve the status quo (which may be of interest to the present "scientific" establishment) than a concern for understanding the human condition.

Despite the dangers of falling into the trap of advocating a particular philosophy that may be doomed to become obsolete given ever-transforming recognitions, I wish to present here a philosophy for scientific analysis. Earlier, I already mentioned that exceptions to the rule, not the norms that define the rule, provide the best evidence for explanatory frameworks, and gave two examples (Darwin's and Einstein's inferences) for this assertion. Exceptions in historical evidence have this quality of two reasons.

First, they point to the complexities in reality and thereby, if attention is given to them, disallow reduction into simplistic, therefore largely meaningless, frameworks. Simple causational frameworks are indeed not very satisfactory. Explanation requires the additional step of realizing why the causal relationship exists. This step always necessitates complex, interpretative reflection. In such interpretations, exceptions to the recorded norms of different historical periods provide perspectives into reasons why norms might have been produced at these particular historical periods. To evaluate these perspectives, we need to utilize the idea of the framework of complementarity. That is, instead of discarding the exceptions, they must be included in the explanatory framework. Using dialectic analysis, these exceptions can then be judged in view of the norms to qualify the norms and to reflect upon the reasons why the norms have been given. Each exception represents an alternative that could have become the norm. The principles of dialectic analysis, which are founded on the premise of the unity of opposites or of contradictory phenomena, are especially useful for such reflection.

Second, exceptions generally present unadulterated evidence. Usually there is no special interest in misrepresenting exceptions in history. Rather, exceptions are usually recorded as problematic or perplexing phenomena. Thereby, they present a good pool of evidence against which to judge the validity of recorded historical norms.

While in historical studies, recorded evidence is given priority, they must be approached with great care and critical appraisal. Anthropology and history provide examples of many instances where bias in recording facts has become norm. The records of European traders which consistently document trading with men in Africa when, in fact, women were the traders in these cultures is due to the colonialists' refusal to deal with women. Land ownership records which document much wider ownership than what in actuality is the case in developing regions of the world are manipulated by the powerful land owners in fear of land reform policies. In using such data, critical
recognition of the ideologies and power structures of the time is crucial, and again, exceptions to recorded positivities may provide the best evidence.

Positivists/logical empiricists/falsifications are likely to react to historicist philosophies citing that their methods produce more valid and reliable positivities than judgmental interpretations of evidence. This is, in fact, not true. Empirical measurements are replete with flaws as discussed here and elsewhere (Firat 1985b), and more importantly, each empirical research does not present and could not present the holistic, complex nature of reality. Consequently, given the positivities from each research, holistic explanations will always require interpretations through comparing, contrasting, complementing, and associating of singular research results. Furthermore, logical empiricist methods cannot and do not always provide the more valid evidences. Examples where more valid and meaningful positivities are documented include psychoanalysis and qualitative research (Kirk and Miller 1986: 24-32). Typical failures of empirical methods have been documented in history in production of elitist IQ tests, sexist (documentations of temporal male-female differences), and racist (documentations of temporal and cultural ethnic differences) ideologies.

Conclusion

Macromarketing is a necessary part of marketing discourse if this discourse is to be scientific. Clearly, presently, marketing discipline is very much a positivist/logical empiricist field. Consequently, it is vulnerable to all the flaws and problems I have discussed in this paper, and more. The historical approach which is crucial for scientificity can only be achieved through linking micro phenomena to their complex history and context. This can only be achieved through macro theories, analyses, and studies. Micro, temporal positivities can possess relevance for human knowledge for the sake of understanding the human condition when they are interpreted within their historical, larger context. Therefore, the growing interest in and importance of macromarketing within the discipline is a welcome harbinger of a trend toward greater scientificity and relevance in marketing.

References


1988 AMA Winter Educators' Conference

Marketing:
A Return To The Broader Dimensions

EDITORS

Stanley Shapiro
Simon Fraser University

A.H. Walle
Alfred University

Proceedings Series
250 S. Wacker Drive • Chicago, Illinois 60606 • (312) 648-0536